Abstract
We analyze here a multigrid algorithm used for solving iteratively the algebraic system resulting from the approximation of a second-order problem by spectral or spectral element methods. The analysis, performed here in the one-dimensional case, justifies the good smoothing properties of the Jacobi preconditioner that has been presented in Part I of this paper.
Similar content being viewed by others
References
Bank, R. E., and Douglas, C. C. (1985). Sharp estimates for multigrid rates of convergence with general smoothing and acceleration,SIAM J. on Numerical Analysis 22(4), 617, 633.
Braess, D., and Verfürth, R. (1988). A note on multigrid methods for nonconforming finite element methods, Stochastische Mathematische Modelle, number 453, preprint Universität Heidelberg.
Davis, P. J., and Rabinowitz, P. (1985).Methods of Numerical Integration, Academic Press, New York.
Door, M. R. (1984). The approximation theory for thep-version of the finite element method,SINUM 18(3), 1180, 1207.
Fischer, P., Ronquist, E. M., Dewey, D., and Patera, A. T. (1988). Spectral element methods, algorithm and architecture. InProceedings of the First International Conference on Domain Decomposition Methods for P.D.E., Paris, Glowinski, R., Golub, G., Meurant, G., and Periaux, J. (eds.), SIAM, Philadelphia.
Funaro, D. (1986). A multidomain spectral approximation of elliptic equations,Numer. Math. PDEs 2, 187–205.
Funaro, D., Quarteroni, A., and Zanolli, P. (1988). An iterative procedure with interface relaxation for domain decomposition methods,SIAM J. on Numerical Analysis 25(6), 1213, 1236.
Gottlieb, D., Hussaini, M. Y., and Orszag, S. A. (1984). Introduction, theory and applications of spectral methods, inSpectral Methods for Partial Differential Equations, Voigt, R. G., Gottlieb, D., and Hussaini, M. Y. (eds.), SIAM, Philadelphia.
Heinrichs, W. (1988). Improved condition number for spectral methods, to appear inMath. Comput.
Maday, Y., and Patera, A. T. (1989). Spectral element methods for the incompressible Navier-Stokes equations, inState of the Art Surveys in Computational Mechanics, Noor, A. K. (ed.), ASME, New York.
Maday, Y., Patera, A. T., and Ronquist, E. M. (1988). A well posed optimal spectral element approximation for the Stokes problem. lcase report No. 87-48, to appear inSIAM J. on Numerical Analysis.
Maday, Y., Patera, A. T., and Ronquist, E. M. (1989). A spectral element approximation for the two-dimensional Stokes problem. In preparation.
Maitre, J. F., and Musy, F. (1984). Multigrid methods: Convergence theory in a variational framework,SIAM J. on Numerical Analysis 21(4), 657–671.
Patera, A. T. (1984). A spéctral element method for fluid dynamics: Laminar flow in a channel expansion,J. Comput. Phys. 54, 468–88.
Quarteroni, A., and Sacchi Landriani, G. (1988). Domain decomposition preconditioners for the spectral collocation method,J. Sci. Comput. 45, 45–76.
Ronquist, E. M. (1988). Optimal spectral element methods for the unsteady three-dimensional incompressible Navier-Stokes equations, Ph.D. thesis, Massachusetts Institute of Technology.
Ronquist, E. M., and Patera, A. T. (1987). Spectral element multigrid. I. Formulation and numerical results,J. Sci. Comput. 2(2), 389–406.
Voigt, R. G., Gottlieb, D., and Hussaini, M. Y. (eds.) (1984).Spectral Methods for Partial Differential Equations, SIAM, Philadelphia.
Zang, T. A., Wong, Y. S., and Hussaini, M. Y. (1982). Spectral multigrid methods for elliptic equations,J. Comput. Phys. 48, 485–501.
Zang, T. A., Wong, Y. S., and Hussaini, M. Y. (1984). Spectral multigrid methods for elliptic equations II,J. Comput. Phys. 52, 489–507.
Zang, T. A. (1988). Personal communication.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Maday, Y., Munoz, R. Spectral element multigrid. II. Theoretical justification. J Sci Comput 3, 323–353 (1988). https://doi.org/10.1007/BF01065177
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF01065177