Skip to main content
Log in

Database management and analysis tools of machine induction

  • Published:
Journal of Intelligent Information Systems Aims and scope Submit manuscript

Abstract

This paper surveys machine induction techniques for database management and analysis. Our premise is that machine induction facilitates an evolution from relatively unstructured data stores to efficient and correct database implementations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arango, G. (1988).Domain Engineering for Software Reuse. Ph.D. dissertation, Irvine, CA: Department of Information and Computer Science, University of California.

  • Basseville, M. and Benveniste, A. (1983). Sequential Detection of Abrupt Changes in Spectral Characteristics of Digital Systems.IEEE Transactions on Information Theory, 25, 709–724.

    Google Scholar 

  • Biwas, G. Lee, G. and Weinberg, J. (in press). Concept Formation using ITERATE: Building Rule Models for Efficient Reasoning.Proceedings of Applications of AIXI, Orlando, FL.

  • Breiman, L., Friedman, J., Olshen, R., and Stone, C. (1984).Classification and Regression Trees. Belmont, CA: Wadsworth.

    Google Scholar 

  • Chan, P.K. (1989). Inductive Learning with BCT.Proceedings of the Sixth International Workshop on Machine Learning, pp. 104–108. Ithaca: Morgan Kaufmann.

    Google Scholar 

  • Cheeseman, P. (1990). On Finding the Most Probable Model. In J. Shrager and P. Langley (Eds.),Computational Models of Discovery and Theory Formation. San Mateo, CA: Morgan Kaufmann.

    Google Scholar 

  • Chen, M.C. and McNamee, L. (1991). Summary Data Estimation Using Decision Trees. In G. Piatetsky-Shapiro and W.J. Frawley (Eds.),Knowledge Discovery in Databases. Menlo Park, CA: The AAAI Press.

    Google Scholar 

  • Clark, P. and Niblett, T. (1989). The CN2 Induction Algorithm.Machine Learning, 3, 261–284.

    Google Scholar 

  • Codd, E.F. (1970). A Relational Model for Large Shared Data Banks.Communications of the ACM, 13, 6, 377–387.

    Google Scholar 

  • Date, C.J. (1990).An Introduction to Database Systems. Reading, MA: Addison-Wesley.

    Google Scholar 

  • Dietterich, T.G. and Michalski, R.S. (1986). Learning to Predict Sequences. In R.S. Michalski, J.G. Carbonell, and T.M. Mitchell (Eds.),Machine Learning: An Artificial Intelligence Approach, Vol. 2. San Mateo, CA: Morgan Kaufmann.

    Google Scholar 

  • Evans, R. and Fisher, D. (1992). Process Delay Analysis using Decision Tree Induction. Technical Report CS-92-06. Department of Computer Science, Vanderbilt University, Nashville, TN.

    Google Scholar 

  • Everitt, B. (1981).Cluster Analysis. London: Heinemann.

    Google Scholar 

  • Falkenhainer, B.C. and Michalski, R.S. (1986). Integrating Quantitative and Qualitative Discovery: The ABACUS System.Machine Learning, 1, 4, 367–402.

    Google Scholar 

  • Fisher, D.H. (1987a).Knowledge Acquisition via Incremental Conceptual Clustering. Ph.D. dissertation, Irvine, CA: Department of Information and Computer Science, University of California.

  • Fisher, D.H. (1987b). Knowledge Acquisition via Incremental Conceptual Clustering.Machine Learning, 2, 139–172.

    Google Scholar 

  • Fisher, D.H. (1989). Noise-tolerant conceptual clustering.Proc. Int. Joint Conf. Artif. Intell. (pp. 825–830). Detroit, MI: Morgan Kaufmann.

    Google Scholar 

  • Fisher, D.H. and Langley, P. (1986). Conceptual Clustering and Its Relation to Numerical Taxonomy. In W.A. Gale (Ed.),Artificial Intelligence and Statistics. Reading, MA: Addison-Wesley.

    Google Scholar 

  • Fisher, D. and Pazzani, M. (1991). Computational Models of Concept Learning. In D. Fisher and M. Pazzani (Eds.),Concept formation: Knowledge and Experience in Unsupervised Learning. San Mateo, CA: Morgan Kaufmann.

    Google Scholar 

  • Frawley, W.J., Piatetsky-Shapiro, G., and Matheus, C.J. (1992). Knowledge Discovery in Databases: An Overview.AI Magazine, 13, 3, 57–70.

    Google Scholar 

  • Gluck, M.A. and Corter, J.E. (1985). Information, uncertainty, and the utility of categories.Proc. Seventh Ann. Conf. Cognitive Science Soc. (pp. 283–287). Irvine, CA: Lawrence Erlbaum.

    Google Scholar 

  • Hadzikadic, M. and Yun, D. (1989). Concept formation by incremental conceptual clustering.Proc. Int. Joint Conf. Artif. Intell. (pp. 831–836). Detroit, MI: Morgan Kaufmann.

    Google Scholar 

  • Hunter, L., Harris, N., and States, D.J. (1992). Efficient classification of massive, unsegmented datastreams.Proc. Ninth Int. Conf. Machine Learning (pp. 224–232). Aberdeen, UK: Morgan Kaufmann.

    Google Scholar 

  • Jain, A.K. and Dubes, R.C. (1988).Algorithms for Cluster Analysis. Englewood Cliffs, NJ: Prentice Hall.

    Google Scholar 

  • Kaufmann, K.A., Michalski, R.S., and Kerschberg, L. (1991). Mining for Knowledge in Databases: Goals and General Descriptions of the Inlen System. In G. Piatetsky-Shapiro and W.J. Frawley (Eds.),Knowledge Discovery in Databases. Menlo Park, CA: The AAAI Press.

    Google Scholar 

  • Kolodner, J.L. (1983). Reconstructive Memory: A Computer Model.Cognitive Science, 7, 281–328.

    Google Scholar 

  • Langley, P., Zytkow, J.M., Simon, H.A., and Bradshaw, G.L. (1986). The Search for Regularity: Four Aspects of Scientific Discovery. In R.S. Michalski, J.G. Carbonell, and T.M. Mitchell (Eds.),Machine Learning: An Artificial Intelligence Approach, Vol. 2. San Mateo, CA: Morgan Kaufmann.

    Google Scholar 

  • Lebowitz, M. (1987). Experiments with Incremental Concept Formation: Unimem.Machine Learning, 2, 103–138.

    Google Scholar 

  • Lenet, D.B. (1977). Automated theory formation in mathematics.Proc. Fifth Int. Joint Conf. Artif. Intell. (pp. 833–841). Cambridge, MA: Morgan Kaufmann.

    Google Scholar 

  • Manganaris, S., Fisher, D., and Kulkarni, D. (1992). Towards a Machine Learning Framework for Acquiring and Exploiting Monitoring and Diagnostic Knowledge. Technical Report CS-92-10. Nashville, TN: Department of Computer Science, Vanderbilt University.

  • McKusick, K. and Thompson, K. (1990). COBWEB/3: A Portable Implementation (Tech. Rep. No. FIA-90-6-18-2). Moffett Field, CA: AI Research Branch, NASA Ames Research Center.

    Google Scholar 

  • Michalski, R. S. (1983). A Theory and Methodology of Inductive Learning. In R.S. Michalski, J.G. Carbonell, and T.M. Mitchell (Eds.),Machine Learning: An Artificial Intelligence Approach. Los Altos, CA: Morgan Kaufmann.

    Google Scholar 

  • Michalski, R. S. and Chilausky, R. (1981). Knowledge Acquisition by Encoding Expert Rules versus Computer Induction by Examples. In B. Gaines (Ed.),Fuzzy Reasoning and Its Applications. New York: Academic Press.

    Google Scholar 

  • Michalski, R. S. and Stepp, R. (1983a). Automated Construction of Classifications: Conceptual Clustering versus Numerical Taxonomy.IEEE Transactions on Pattern Analysis and Machine Intelligence, 5, 219–243.

    Google Scholar 

  • Michalski, R. S. and Stepp, R. (1983b). Learning from Observation: Conceptual Clustering. In R.S. Michalski, J.G. Carbonell, and T.M. Mitchell (Eds.),Machine Learning: An Artificial Intelligence Approach. San Mateo, CA: Morgan Kaufmann.

    Google Scholar 

  • Mitchell, T., Keller, R., and Kedar-Cabelli, S. (1986). Explanation-Based Learning: A Unifying View.Machine Learning, 1, 47–80.

    Google Scholar 

  • Musen, M. A. (1989). Automated Support for Building and Extending Expert Systems.Machine Learning, 4(3), 347–376.

    Google Scholar 

  • Ortega, J., Lee, G., and Fisher, D. (1989). Representation and processing issues underlying machine learning from examples.Proc. Second Int. Conf. Industrial and Engineering Appl. Artif. Intell. Expert Systems (pp. 845–851). Tullahoma, TN: ACM Press.

    Google Scholar 

  • Pagallo, G. and Haussler, D. (1990). Boolean Feature Discovery in Empirical Learning.Machine Learning, 5, 1, 71–100.

    Google Scholar 

  • Quinlan, J. R. (1986). Induction of Decision Trees.Machine Learning, 1, 81–106.

    Google Scholar 

  • Quinlan, J. R. (1987a). Decision trees as probabilistic classifiers.Proc. Fourth Int. Machine Learning Workshop (pp. 31–37). Irvine, CA: Morgan Kaufmann.

    Google Scholar 

  • Quinlan, J. R. (1987b). Simplifying Decision Trees.International Journal of Man-Machine Studies, 27, 221–234.

    Google Scholar 

  • Quinlan, J. R. (1990). Learning Logical Definitions from Relations.Machine Learning, 5, 239–266.

    Google Scholar 

  • Reich, Y. and Fenves, S. (1991). The Formation and Use of Abstract Concepts in Design. In D. Fisher and M. Pazzani (Eds.),Concept Formation: Knowledge and Experience in Unsupervised Learning. San Mateo, CA: Morgan Kaufmann.

    Google Scholar 

  • Romesburg, H. C. (1984).Cluster Analysis for Researchers. Belmont, CA: Lifetime Learning Publications.

    Google Scholar 

  • Russell, S. J. (1986). Preliminary Steps toward the Automation of Induction.Proceedings of the Fifth National Conference on Artificial Intelligence, pp. 477–484. Philadelphia: Morgan Kaufmann.

    Google Scholar 

  • Schlimmer, J. C. (1991). Database consistency via inductive learning. InProc. Eighth Int. Workshop Machine Learning (pp. 640–644). Evanston, IL: Morgan Kaufmann.

    Google Scholar 

  • Siegel, M., Sciore, E., and Salveter, S. (1991). Rule Discovery for Query Optimization. In G. Piatetsky-Shapiro and W.J. Frawley (Eds.),Knowledge Discovery in Databases. Menlo Park, CA: The AAAI Press.

    Google Scholar 

  • Smith, J. M. (1986). Expert database systems: a database perspective.Proc. First Int. Workshop Expert Database Systems (pp. 3–16). South Carolina: Benjamin/Cummings.

    Google Scholar 

  • Stepp, R. and Michalski, R. (1986). Conceptual Clustering: Inventing Goal-Oriented Classifications of Structured Objects. In R. S. Michalski, J.G. Carbonell, and T.M. Mitchell (Eds.),Machine Learning: An Artificial Intelligence Approach, Vol. 2. San Mateo, CA: Morgan Kaufmann.

    Google Scholar 

  • Tukey, J.W. (1977).Exploratory Data Analysis. Reading, MA: Addison-Wesley.

    Google Scholar 

  • Ullman, J.D. (1980),Principles of Database Systems. Potomac, MD: Computer Science Press.

    Google Scholar 

  • VanLehn, K. and Ball, W. (1987). A Version-Space Approach to Learning Context-Free Grammars.Machine Learning, 39, 39–74.

    Google Scholar 

  • Whitehall, B.L., Lu, S.C.-Y., and Stepp, R.E. (1990). CAQ: A Machine Learning Tool for Engineering.Artificial Intelligence in Engineering, 5, 189–198.

    Google Scholar 

  • Yoo, J. and Fisher, D. (1991). Concept Formation over Problem Solving Experience. In D. Fisher and M. Pazzani (Eds.),Concept Formation: Knowledge and Experience in Unsupervised Learning. San Mateo, CA: Morgan Kaufmann.

    Google Scholar 

  • Zytkow, J. and Baker, J. (1991). Interactive Mining of Regularities in Databases. In G. Piatetsky-Shapiro and W.J. Frawley (Eds.),Knowledge Discovery in Databases. Menlo Park, CA: The AAAI Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fisher, D., Hapanyengwi, G. Database management and analysis tools of machine induction. J Intell Inf Syst 2, 5–38 (1993). https://doi.org/10.1007/BF01066545

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01066545

Keywords

Navigation