Abstract
A rapidly growing number of user and student modeling systems have employed numerical techniques for uncertainty management. The three major paradigms are those of Bayesian networks, the Dempster-Shafer theory of evidence, and fuzzy logic. In this overview, each of the first three main sections focuses on one of these paradigms. It first introduces the basic concepts by showing how they can be applied to a relatively simple user modeling problem. It then surveys systems that have applied techniques from the paradigm to user or student modeling, characterizing each system within a common framework. The final main section discusses several aspects of the usability of these techniques for user or student modeling, such as their knowledge engineering requirements, their need for computational resources, and the communicability of their results.
Similar content being viewed by others
References
Ayton, P. and E. Pascoe: 1995, ‘Bias in Human Judgement under Uncertainty?’.The Knowledge Engineering Review 10(1), 21–41.
Bauer, M.: 1995, ‘A Dempster-Shafer Approach to Modeling Agent Preferences for Plan Recognition’.User Modeling and User-Adapted Interaction. In this special issue.
Bauer, M.: 1996, ‘Acquisition of User Preferences for Plan Recognition’. In:Proceedings of the Fifth International Conference on User Modeling. Kailua-Kona, HI.
Besnard, P. and S. Hanks (eds.): 1995,Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence. San Francisco: Morgan Kaufmann.
Carberry, S.: 1990, ‘Incorporating Default Inferences into Plan Recognition’. In:Proceedings of the Eight National Conference on Artificial Intelligence. Boston, MA, pp. 471–478.
Carbonaro, A., V. Maniezzo, M. Roccetti, and P. Salomoni: 1995, ‘Modelling the Student in Pitagora 2.0’.User Modeling and User-Adapted Interaction 4, 233–251.
Chandrasekaran, B.: 1994, ‘Broader Issues at Stake: A Response to Elkan’.IEEE Expert 9(4), 10–13.
Charniak, E.: 1991, ‘Bayesian Networks without Tears’.AI Magazine 12(4), 50–63.
Charniak, E. and R. Goldman: 1991, ‘A Probabilistic Model of Plan Recognition’. In:Proceedings of the Ninth National Conference on Artificial Intelligence. Anaheim, CA, pp. 160–165.
Charniak, E. and R. P. Goldman: 1993, ‘A Bayesian Model of PlanRecognition’.Artifcial Intelligence 64, 53–79.
Chin, D. N.: 1989, ‘KNOME: Modeling What the User Knows in UC’. In: A. Kobsa and W. Wahlster (eds.):User Models in Dialog Systems. Berlin: Springer, pp. 74–107.
Conati, C. and K. VanLehn: 1996, ‘POLA: A Student Modeling Framework for Probabilistic OnLine Assessment of Problem Solving Performance’. In:Proceedings of the Fifth International Conference on User Modeling. Kailua-Kona, HI.
Cox, E.: 1994,The Fuzzy Systems Handbook: A Practitioner's Guide to Building, Using, and Maintaining Fuzzy Systems. Boston: AP Professional.
de Rosis, F., S. Pizzutilo, A. Russo, D. C. Berry, and F. J. N. Molina: 1992, ‘Modeling the User Knowledge by Belief Networks’.User Modeling and User-Adapted Interaction 2, 367–388.
Delcher, A. L., A. Grove, S. Kasif, and J. Pearl: 1995, ‘Logarithmic-Time Updates and Queries in Probabilistic Networks’. In: P. Besnard and S. Hanks (eds.):Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence. San Francisco: Morgan Kaufmann, pp. 116–124.
Dempster, A. P. and A. Kong: 1988, ‘Uncertain Evidence and Artificial Analysis’.Journal of Statistical Planning and Inference 20, 355–368. Reprinted in collection by Shafer and Pearl (1990).
Desmarais, M. C., A. Maluf, and J. Liu: 1995, ‘User-Expertise Modeling with Empirically Derived Probabilistic Implication Networks’.User Modeling and User-Adapted Interaction. In this special issue.
Draney, K. L., P. Pirolli, and M. Wilson: 1995, ‘A Measurement Model for a Complex Cognitive Skill’. In: P. D. Nichols, S. F. Chipman, and R. L. Brennan (eds.):Cognitively Diagnostic Assessment. Hillsdale, NJ: Erlbaum, pp. 103–125.
Druzdzel, M., L. van der Gaag, M. Henrion, and F. Jensen: 1995, ‘Building Probabilistic Networks: Where Do the Numbers Come From?’. Working notes of a workshop held in conjunction with the Fourteenth International Joint Conference on Artificial Intelligence.
Druzdzel, M. J. and L. C. van der Gaag: 1995, ‘Elicitation of Probabilities for Belief Networks: Combining Qualitative and Quantitative Information’. In: P. Besnard and S. Hanks (eds.):Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence. San Francisco: Morgan Kaufmann, pp. 141–148.
Dubois, D., H. Prade, and R. R. Yager (eds.): 1993,Readings in Fuzzy Sets for Intelligent Systems. San Mateo, CA: Morgan Kaufmann.
Elkan, C.: 1994, ‘The Paradoxical Success of Fuzzy Logic’.IEEE Expert 9(4), 3–8.
Falmagne, J.-C., M. Koppen, M. Villano, J.-P. Doignon, and L. Johannesen: 1990, ‘Introduction to Knowledge Spaces: How to Build, Test, and Search Them’.Psychological Review 97, 201–224.
Fiske, S. T. and S. E. Taylor: 1991,Social Cognition. New York: McGraw-Hill. 2nd edition.
Forbes, J., T. Huang, K. Kanazawa, and S. Russell: 1995, ‘The BATmobile: Towards a Bayesian Automated Taxi’. In: C. S. Mellish (ed.):Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence. San Mateo, CA: Morgan Kaufmann, pp. 1878–1885.
Freksa, C.: 1994, ‘Fuzzy Logic: An Interface Between Logic and Human Reasoning’.IEEE Expert 9(4), 20–21.
Gordon, J. and E. H. Shortliffe: 1984, ‘The Dempster-Shafer Theory of Evidence’. In:B. G. Buchanan and E. H. Shortliffe (eds.):Rule-Based Expert Systems: The MYCIN Experiments of the Stanford Heuristic Programming Project. Reading: MA: Addison-Wesley.
Hambleton, R. K. and H. Swaminathan: 1985,Item Response Theory: Principles and Applications. Boston: Kluwer-Nijhoff.
Hawkes, L. W., S. J. Derry, and E. A. Rundensteiner: 1990, ‘Individualized Tutoring Using an Intelligent Fuzzy Temporal Relational Database’.International Journal of Man-Machine Studies 33, 409–429.
Heckerman, D., D. Geiger, and D. M. Chickering: 1994, ‘Learning Bayesian Networks: The Combination of Knowledge and Statistical Data’. In: R. Lopez de Mantaras and D. Poole (eds.):Proceedings of the Tenth Conference on Uncertainty in Artificial Intelligence. San Francisco: Morgan Kaufmann, pp. 293–301.
Henrion, M. and M. J. Druzdzel: 1991, ‘Qualitative Propagation and Scenario-Based Schemes for Explaining Probabilistic Reasoning’. In: P. P. Bonissone, M. Henrion, L. N. Kanal, and J. F. Lemmer (eds.):Uncertainty in Artificial Intelligence 6. Amsterdam: Elsevier, pp. 17–32.
Henrion, M., G. Provan, B. D. Favero, and G. Sanders: 1994, ‘An Experimental Comparison of Numerical and Qualitative Probabilistic Reasoning’. In: R. Lopez de Mantaras and D. Poole (eds.):Proceedings of the Tenth Conference on Uncertainty in Artificial Intelligence. San Francisco: Morgan Kaufmann, pp. 319–326.
Herzog, C.: 1994, ‘Fuzzy-Techniken für das Verstehen von Studentenlösungen in intelligenten Lehrsystemen [Fuzzy Techniques for Understanding Student Solutions in Intelligent Tutoring Systems]’. In: R. Gunzenhäuser, C. Möbus, and D. Rösner (eds.):Papers for the Seventh Meeting of GI Section 1.1.5/7.0.1, “Intelligent Tutoring Systems”. Ulm, Germany: Research Institute for Application-Oriented Knowledge Processing (FAW). Proceedings available as FAW Technical Report FAW-TR-94003.
Horvitz, E. and M. Barry: 1995, ‘Display of Information for Time-Critical Decision Making’. In: P. Besnard and S. Hanks (eds.):Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence. San Francisco: Morgan Kaufmann, pp. 296–314.
Huber, M. J., E. H. Durfee, and M. P. Wellman: 1994, ‘The Automated Mapping of Plans for Plan Recognition’. In: R. Lopez de Mantaras and D. Poole (eds.):Proceedings of the Tenth Conference on Uncertainty in Artificial Intelligence. San Francisco: Morgan Kaufmann, pp. 344–351.
Hustadt, U. and A. Nonnengart: 1993, ‘Modalities in Knowledge Representation’. In:Proceedings of the Sixth Australian Joint Conference on Artificial Intelligence. Sydney, pp. 249–254.
Jameson, A.: 1992, ‘Generalizing the Double-Stereotype Approach: A Psychological Perspective’. In: E. André, R. Cohen, W. Graf, B. Kass, C. Paris, and W. Wahlster (eds.):Proceedings of the Third International Workshop on User Modeling. Dagstuhl, Germany, pp. 69–83. Proceedings available as Report DFKI-D-92-17 of the German Research Center for Artificial Intelligence, Saarbrücken.
Jameson, A.: 1995, ‘Logic Is Not Enough: Why Reasoning About Another Person's Beliefs Is Reasoning Under Uncertainty’. In: A. Laux and H. Wansing (eds.):Knowledge and Belief in Philosophy and Artificial Intelligence. Berlin: Akademie Verlag, pp. 199–229.
Jameson, A., R. Schäfer, J. Simons, and T. Weis: 1995, ‘Adaptive Provision of Evaluation-Oriented Information: Tasks and Techniques’. In: C. S. Mellish (ed.):Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence. San Mateo, CA: Morgan Kaufmann, pp. 1886–1893.
Kambouri, M., M. Koppen, M. Villano, and J.-C. Falmagne: 1994, ‘Knowledge Assessment: Tapping Human Expertise by the QUERY Routine’.International Journal of Human-Computer Studies 40, 119–151.
Katz, S. and A. Lesgold: 1992, ‘Approaches to Student Modeling in the Sherlock Tutors’. In: E. André, R. Cohen, W. Graf, B. Kass, C. Paris, and W. Wahlster (eds.):Proceedings of the Third International Workshop on User Modeling. Dagstuhl, Germany, pp. 205–230. Available as Report DFKI-D-92-17 of the German Research Center for Artificial Intelligence, Saarbrücken.
Katz, S., A. Lesgold, G. Eggan, and M. Gordin: 1992, ‘Modeling the Student in Sherlock II’.Journal of Artificial Intelligence in Education 3, 495–518.
Kipper, B. and A. Jameson: 1994, ‘Semantics and Pragmatics of Vague Probability Expressions’. In:Proceedings of the Sixteenth Annual Conference of the Cognitive Science Society. Atlanta, pp. 496–501.
Klein, D. A. and E. H. Shortliffe: 1994, ‘A Framework for Explaining Decision-Theoretic Advice’.Artificial Intelligence 67, 201–243.
Kölln, M. E.: 1995, ‘Employing User Attitudes in Text Planning’. In:Proceedings of the Fifth European Workshop on Natural Language Generation. Leiden, The Netherlands, pp. 163–179.
Kosko, B.: 1992,Neural Networks and Fuzzy Systems: A Dynamical Systems Approach to Machine Intelligence. London: Prentice-Hall.
Kreinovich, V. Y., A. Bernat, W. Borrett, Y. Mariscal, and E. Villa: 1994, ‘Monte-Carlo Methods Make Dempster-Shafer Formalism Feasible’. In: R. R. Yager, J. Kacprzyk, and M. Fedrizzi (eds.):Advances in the Dempster-Shafer Theory of Evidence. New York: Wiley, pp. 175–191.
Kruse, R., E. Schwecke, and J. Heinsohn: 1991,Uncertainty and Vagueness in Knowledge Based Systems: Numerical Methods. Berlin: Springer.
Lamata, M. T. and S. Moral: 1994, ‘Calculus with Linguistic Probabilities and Beliefs’. In: R. R. Yager, J. Kacprzyk, and M. Fedrizzi (eds.):Advances in the Dempster-Shafer Theory of Evidence. New York: Wiley, pp. 133–152.
Lopez de Mantaras, R. and D. Poole (eds.): 1994,Proceedings of the Tenth Conference on Uncertainty in Artificial Intelligence. San Francisco: Morgan Kaufmann.
Maes, P.: 1994, ‘Agents That Reduce Work and Information Overload’.Communications of the ACM 37(7), 30–40.
Martin, J. D. and K. VanLehn: 1993, ‘OLAE: Progress Toward a Multi-Activity, Bayesian Student Modeler’. In: P. Brna, S. Ohlsson, and H. Pain (eds.):Artificial Intelligence in Education: Proceedings of AI-ED 93. Charlottesville, VA: Association for the Advancement of Computing in Education, pp. 410–417.
Martin, J. D. and K. VanLehn: 1995, ‘A Bayesian Approach to Cognitive Assessment’. In: P. D. Nichols, S. F. Chipman, and R. L. Brennan (eds.):Cognitively Diagnostic Assessment. Hillsdale, NJ: Erlbaum, pp. 141–165.
Mislevy, R. J.: 1994, ‘Evidence and Inference in Educational Assessment’.Psychometrika 59, 439–483.
Mislevy, R. J. and D. H. Gitomer: 1995, ‘The Role of Probability-Based Inference in an Intelligent Tutoring System’.User Modeling and User-Adapted Interaction. In this special issue.
Neapolitan, R. E.: 1990,Probabilistic Reasoning in Expert Systems: Theory and Algorithms. New York: Wiley.
Nisbett, R. and L. Ross: 1980,Human Inference: Strategies and Shortcomings of Social Judgment. Englewood Cliffs, NJ: Prentice-Hall.
Orwant, J.: 1995, ‘Heterogeneous Learning in the Doppelgänger User Modeling System’.User Modeling and User-Adapted Interaction 4(2), 107–130.
Pearl, J.: 1988,Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. San Mateo, CA: Morgan Kaufmann.
Petrushin, V. A. and K. M. Sinitsa: 1993, ‘Using Probabilistic Reasoning Techniques for Learner Modeling’. In: P. Brna, S. Ohlsson, and H. Pain (eds.):Artificial Intelligence in Education: Proceedings of AI-ED 93. Charlottesville, VA: Association for the Advancement of Computing in Education, pp. 418–425.
Petrushin, V. A., K. M. Sinitsa, and V. Zherdienko: 1995, ‘Probabilistic Approach to Adaptive Students’ Knowledge Assessment: Methodology and Experiment’. In: J. Greer (ed.):Artificial Intelligence in Education: Proceedings of AI-ED 95. Charlottesville VA: Association for the Advancement of Computing in Education, pp. 51–58.
Popp, H. and D. Lödel: 1995, ‘Fuzzy Techniques and User Modeling in Sales Assistants’.User Modeling and User-Adapted Interaction. In this special issue.
Pynadath, D. V. and M. P. Wellman: 1995, ‘Accounting for Context in Plan Recognition, with Application to Traffic Monitoring’. In: P. Besnard and S. Hanks (eds.):Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence. San Francisco: Morgan Kaufmann, pp. 472–481.
Quinlan, J. R.: 1983, ‘Learning Efficient Classification Procedures and Their Application to Chess End Games’. In: R. Michalski, J. Carbonell, and T. Mitchell (eds.):Machine Learning: An Artificial Intelligence Approach. Berlin: Springer, pp. 463–482.
Raskutti, B. and I. Zukerman: 1991, ‘Handling Uncertainty During Plan Recognition in Task-Oriented Consultation Systems’. In: B. D. D'Ambrosio, P. Smets, and P. P. Bonissone (eds.):Uncertainty in Artificial Intelligence: Proceedings of the Seventh Conference. San Mateo, CA: Morgan Kaufmann, pp. 308–315.
Roccetti, M. and P. Salomoni: 1995, ‘Using Bayesian Belief Networks for the Automated Assessment of Students' Knowledge of Geometry Solving Procedures’. Manuscript submitted for publication.
Russell, S., J. Binder, D. Koller, and K. Kanazawa: 1995, ‘Local Learning in Probabilistic Networks with Hidden Variables’. In: C. S. Mellish (ed.):Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence. San Mateo, CA: Morgan Kaufmann, pp. 1146–1152.
Russell, S. J. and P. Norvig: 1995,Artificial Intelligence: A Modern Approach. Englewood Cliffs, NJ: Prentice-Hall.
Schäfer, R.: 1994, ‘Multidimensional Probabilistic Assessment of Interest and Knowledge in a Noncooperative Dialog Situation’. In: C. G. Thomas (ed.):Proceedings of ABIS-94: GI Workshop on Adaptivity and User Modeling in Interactive Software Systems. Sankt Augustin, Germany, pp. 46–62.
Shafer, G. and J. Pearl (eds.): 1990,Readings in Uncertain Reasoning. San Mateo, CA: Morgan Kaufmann.
Shafer, G. and A. Tversky: 1985, ‘Languages and Designs for Probability Judgment’.Cognitive Science 9, 177–210.
Shenoy, P. P.: 1994, ‘Using Dempster-Shafer's Belief Function Theory in Expert Systems’. In: R. R. Yager, J. Kacprzyk, and M. Fedrizzi (eds.):Advances in the Dempster-Shafer Theory of Evidence. New York: Wiley, pp. 395–414.
Sheth, B. and P. Maes: 1993, ‘Evolving Agents for Personalized Information Filtering’. In:Proceedings of the Ninth Conference on Artificial Intelligence for Applications, CAIA-93. Orlando, FL, pp. 345–352.
Sime, J.-A.: 1993, ‘Modelling a Learner's Multiple Models with Bayesian Belief Networks’. In: P. Brna, S. Ohlsson, and H. Pain (eds.):Artificial Intelligence in Education: Proceedings of AI-ED 93. Charlottesville, VA: Association for the Advancement of Computing in Education, pp. 426–432.
Tokuda, N. and A. Fukuda: 1993, ‘A Probabilistic Inference Scheme for Hierarchical Buggy Models’.International Journal of Man-Machine Studies 38, 857–872.
Vadiee, N. and M. Jamshidi: 1994, ‘The Promising Future of Fuzzy Logic’.IEEE Expert 9(4), 36–38.
van Beek, P.: 1996, ‘An Investigation of Probabilistic Interpretations of Heuristics in Plan Recognition’. In:Proceedings of the Fifth International Conference on User Modeling. Kailua-Kona, HI.
van Mulken, S.: 1996, ‘Reasoning About the User's Decoding of Presentations in an Intelligent Multimedia Presentation System’. In:Proceedings of the Fifth International Conference on User Modeling. Kailua-Kona, HI.
Villano, M.: 1992, ‘Probabilistic Student Models: Bayesian Belief Networks and Knowledge Space Theory’. In: C. Frasson, G. Gauthier, and G. I. McCalla (eds.):Intelligent Tutoring Systems: Proceedings of the Second International Conference, ITS'92. Berlin: Springer, pp. 491–498.
von Winterfeldt, D. and W. Edwards: 1986,Decision Analysis and Behavioral Research. Cambridge, England: Cambridge University Press.
Wahlster, W., E. André, W. Finkler, H.-J. Profitlich, and T. Rist: 1993, ‘Plan-Based Integration of Natural Language and Graphics Generation’.Artificial Intelligence 63, 387–427.
Wallsten, T. S. and D. V. Budescu: 1995, ‘A Review of Human Linguistic Probability Processing: General Principles and Empirical Evidence’.The Knowledge Engineering Review 10(1), 43–62.
Wallsten, T. S., D. V. Budescu, R. Zwick, and S. M. Kemp: 1993, ‘Preferences and Reasons for Communicating Probabilistic Information in Verbal or Numerical Terms’.Bulletin of the Psychonomic Society 31, 135–138.
Wellman, M. P. and C.-L. Liu: 1995, ‘State-Space Abstraction for Anytime Evaluation of Probabilistic Networks’. In: P. Besnard and S. Hanks (eds.):Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence. San Francisco: Morgan Kaufmann, pp. 567–574.
Xu, H. and P. Smets: 1995, ‘Generating Explanations for Evidential Reasoning’. In: P. Besnard and S. Hanks (eds.):Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence. San Francisco: Morgan Kaufmann, pp. 574–581.
Yager, R. R.: 1992, ‘Expert Systems Using Fuzzy Logic’. In: R. R. Yager and L. A. Zadeh (eds.):An Introduction to Fuzzy Logic Applications in Intelligent Systems. Boston: Kluwer, pp. 27–44.
Yager, R. R., J. Kacprzyk, and M. Fedrizzi (eds.): 1994,Advances in the Dempster-Shafer Theory of Evidence. New York: Wiley.
Yager, R. R. and L. A. Zadeh (eds.): 1992,An Introduction to Fuzzy Logic Applications in Intelligent Systems. Boston: Kluwer.
Zadeh, L. A.: 1981, ‘Possibility Theory and Soft Data Analysis’. In: L. Cobb and R. Thrall (eds.):Mathematical Frontiers of Social and Policy Sciences. Boulder, CO: Westview Press, pp. 69–129.
Reprinted in collection by Dubois et al. (1993).
Zadeh, L. A.: 1994, ‘Fuzzy Logic, Neural Networks, and Soft Computing’.Communications of the ACM37(3), 77–84.
Zarley, D., Y.-T. Hsia, and G. Shafer: 1988, ‘Evidential Reasoning Using DELIEF’. In:Proceedings of the Seventh National Conference on Artificial Intelligence. St. Paul, MN, pp. 205–209. Reprinted in collection by Shafer and Pearl (1990).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Jameson, A. Numerical uncertainty management in user and student modeling: An overview of systems and issues. User Model User-Adap Inter 5, 193–251 (1995). https://doi.org/10.1007/BF01126111
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF01126111