Abstract
This article explores the link between the concepts of stochastic intensity and Palm probability and gives a new proof and useful extensions to the so-called PASTA property of queueing theory.
Similar content being viewed by others
References
F. Baccelli and P. Brémaud,Palm Probabilities and Stationary Queueing Systems, Lecture Notes in Statistics 41 (Springer-Verlag, New York, 1987).
P. Brémaud, An extension of Watanabe's characterization theorem for Poisson processes, J. Appl. Proba. 12 (1975) 396–399.
P. Brémaud,Point Processes and Queues: Martingale Dynamics (Springer-Verlag, New York, 1981).
P. Brémaud, Necessary and sufficient condition for the equality of event averages and time averages, to appear in J. Appl. Proba, June 1990.
P. Brémaud and J. Jacod, Processus ponctuels et martingales: résultats récents sur la modélisation et le fitrage, Adv. Appl. Proba. 9 (1977) 362–416.
D. Geman and J. Horowitz, Remarks on Palm measures, Ann. Inst. H. Poincaré 9 (1973) 215–232.
J. Jacod, Multivariate point processes: predictable projection, Radon-Nikodym derivatives, representation of martingales, Z. für W. 31 (1975) 235–253.
D. König and V. Schmidt, Imbedded and non-imbedded stationary characteristics of queueing systems with varying service rate and point processes, J. of Applied Proba. 17 (1980) 753–767.
K. Matthes, J. Kerstan and J. Mecke,Infinitely divisible point processes (Wiley, 1978); (Original edition in German in 1974 by Akademie-Verlag, Berlin).
J. Mecke, Stationäre Zufällige auf lokalkompakten Abelschen Gruppen, Z. für W. 8 (1967) 39–56.
B. Melamed, On Poisson traffic processes in discrete space Markovian systems with applications to queueing theory, Adv. Appl. Proba. 11 (1979) 218–239.
B. Melamed and W. Whitt, On arrivals that see time averages: a martingale approach, to appear in Adv. Appl. Proba.
I. Mitrani,Modelling of Computer and Communication Systems (Cambridge University Press, 1987).
J. Neveu,Processus Ponctuels, in: Lect. Notes in Math. 598 (Springer-Verlag, Berlin, 1976).
F. Papangelou, Integrability of expected increments of point processes and a related change of time, Trans. Am. Math. Soc. 165 (1972) 483–506.
R. Serfozo, Poisson functionals of Markov processes and queueing networks, preprint.
S. Watanabe, On discontinuous additive functionals and Lévy measures of a Markov process, Japan J. of Math. 34 (1964) 53–70.
R. Wolff, Poisson arrivals see time averages, Operations Research 30, 2 (1982)223–231.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Brémaud, P. Characteristics of queueing systems observed at events and the connection between stochastic intensity and palm probability. Queueing Syst 5, 99–111 (1989). https://doi.org/10.1007/BF01149188
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF01149188