Skip to main content
Log in

Characteristics of queueing systems observed at events and the connection between stochastic intensity and palm probability

  • Published:
Queueing Systems Aims and scope Submit manuscript

Abstract

This article explores the link between the concepts of stochastic intensity and Palm probability and gives a new proof and useful extensions to the so-called PASTA property of queueing theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Baccelli and P. Brémaud,Palm Probabilities and Stationary Queueing Systems, Lecture Notes in Statistics 41 (Springer-Verlag, New York, 1987).

    Google Scholar 

  2. P. Brémaud, An extension of Watanabe's characterization theorem for Poisson processes, J. Appl. Proba. 12 (1975) 396–399.

    Google Scholar 

  3. P. Brémaud,Point Processes and Queues: Martingale Dynamics (Springer-Verlag, New York, 1981).

    Google Scholar 

  4. P. Brémaud, Necessary and sufficient condition for the equality of event averages and time averages, to appear in J. Appl. Proba, June 1990.

  5. P. Brémaud and J. Jacod, Processus ponctuels et martingales: résultats récents sur la modélisation et le fitrage, Adv. Appl. Proba. 9 (1977) 362–416.

    Google Scholar 

  6. D. Geman and J. Horowitz, Remarks on Palm measures, Ann. Inst. H. Poincaré 9 (1973) 215–232.

    Google Scholar 

  7. J. Jacod, Multivariate point processes: predictable projection, Radon-Nikodym derivatives, representation of martingales, Z. für W. 31 (1975) 235–253.

    Google Scholar 

  8. D. König and V. Schmidt, Imbedded and non-imbedded stationary characteristics of queueing systems with varying service rate and point processes, J. of Applied Proba. 17 (1980) 753–767.

    Google Scholar 

  9. K. Matthes, J. Kerstan and J. Mecke,Infinitely divisible point processes (Wiley, 1978); (Original edition in German in 1974 by Akademie-Verlag, Berlin).

  10. J. Mecke, Stationäre Zufällige auf lokalkompakten Abelschen Gruppen, Z. für W. 8 (1967) 39–56.

    Google Scholar 

  11. B. Melamed, On Poisson traffic processes in discrete space Markovian systems with applications to queueing theory, Adv. Appl. Proba. 11 (1979) 218–239.

    Google Scholar 

  12. B. Melamed and W. Whitt, On arrivals that see time averages: a martingale approach, to appear in Adv. Appl. Proba.

  13. I. Mitrani,Modelling of Computer and Communication Systems (Cambridge University Press, 1987).

  14. J. Neveu,Processus Ponctuels, in: Lect. Notes in Math. 598 (Springer-Verlag, Berlin, 1976).

    Google Scholar 

  15. F. Papangelou, Integrability of expected increments of point processes and a related change of time, Trans. Am. Math. Soc. 165 (1972) 483–506.

    Google Scholar 

  16. R. Serfozo, Poisson functionals of Markov processes and queueing networks, preprint.

  17. S. Watanabe, On discontinuous additive functionals and Lévy measures of a Markov process, Japan J. of Math. 34 (1964) 53–70.

    Google Scholar 

  18. R. Wolff, Poisson arrivals see time averages, Operations Research 30, 2 (1982)223–231.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brémaud, P. Characteristics of queueing systems observed at events and the connection between stochastic intensity and palm probability. Queueing Syst 5, 99–111 (1989). https://doi.org/10.1007/BF01149188

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01149188

Keywords