Abstract
We study single server periodic queues in the day equilibrium conditions. The following characteristics of interest are considered at time of dayt: Vp(t)-the work load, Lp(t)-the number of customers and up(t)-the departure rate. We give relationships between E[Vp(t)], E[Lp(t)] and up(t). We also prove that E[Vp(t)] < ∞ and E[Lp(t)] <∞ provided the second moment of the service time is finite.
Similar content being viewed by others
References
P. Franken, D. Konig, V. Arndt and V. Schmidt,Queues and Point Processes (Akademie-Verlag, Berlin and J. Wiley and Sons, Chichester, 1981).
P. Franken, D. Konig and V. Schmidt, On time dependent and stationary queue length characteristics, Elektron. Informationsverarb. Kybernetik. 16 (1980) 463.
J. Grandell,Doubly Stochastic Poisson Processes, Lecture Notes in Mathematics 529 (Springer-Verlag, Berlin, 1976).
J.M. Harrison and A. Lemoine, Limit theorems for periodic queues, J. Appl. Prob. 14 (1977) 566.
O. Kallenberg,Random Measures (Akademie-Verlag, Berlin and Academic Press, London, 1983).
A. Lemoine, On queues with periodic Poisson input, J. Appl. Prob. 18 (1981) 889.
J. Mecke, Stationare zufällige Masse auf Lokalkompakten Abelschen Gruppen, Z. Wahrscheinlichkeitstheorie verw. Geb. 9 (1967) 36.
T. Rolski,Stationary Processes Associated with Point Processes, Lecture Notes in Statistics 5 (Springer-Verlag, New York, 1981).
T. Rolski, Approximation of periodic queues, Adv. Appl. Prob. 19 (1987) 691.
C. Ryll-Nardzewski, Remarks on processes of calls, In:Proc. 4th Berkely Symp. Math. Stat. Prob., Vol. II (1981).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Rolski, T. Relationships between characteristics in periodic Poisson queues. Queueing Syst 4, 17–26 (1989). https://doi.org/10.1007/BF01150853
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF01150853