Skip to main content

Advertisement

Log in

Relationships between characteristics in periodic Poisson queues

  • Contributed Papers
  • Published:
Queueing Systems Aims and scope Submit manuscript

Abstract

We study single server periodic queues in the day equilibrium conditions. The following characteristics of interest are considered at time of dayt: Vp(t)-the work load, Lp(t)-the number of customers and up(t)-the departure rate. We give relationships between E[Vp(t)], E[Lp(t)] and up(t). We also prove that E[Vp(t)] < ∞ and E[Lp(t)] <∞ provided the second moment of the service time is finite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Franken, D. Konig, V. Arndt and V. Schmidt,Queues and Point Processes (Akademie-Verlag, Berlin and J. Wiley and Sons, Chichester, 1981).

    Google Scholar 

  2. P. Franken, D. Konig and V. Schmidt, On time dependent and stationary queue length characteristics, Elektron. Informationsverarb. Kybernetik. 16 (1980) 463.

    Google Scholar 

  3. J. Grandell,Doubly Stochastic Poisson Processes, Lecture Notes in Mathematics 529 (Springer-Verlag, Berlin, 1976).

    Google Scholar 

  4. J.M. Harrison and A. Lemoine, Limit theorems for periodic queues, J. Appl. Prob. 14 (1977) 566.

    Google Scholar 

  5. O. Kallenberg,Random Measures (Akademie-Verlag, Berlin and Academic Press, London, 1983).

    Google Scholar 

  6. A. Lemoine, On queues with periodic Poisson input, J. Appl. Prob. 18 (1981) 889.

    Google Scholar 

  7. J. Mecke, Stationare zufällige Masse auf Lokalkompakten Abelschen Gruppen, Z. Wahrscheinlichkeitstheorie verw. Geb. 9 (1967) 36.

    Google Scholar 

  8. T. Rolski,Stationary Processes Associated with Point Processes, Lecture Notes in Statistics 5 (Springer-Verlag, New York, 1981).

    Google Scholar 

  9. T. Rolski, Approximation of periodic queues, Adv. Appl. Prob. 19 (1987) 691.

    Google Scholar 

  10. C. Ryll-Nardzewski, Remarks on processes of calls, In:Proc. 4th Berkely Symp. Math. Stat. Prob., Vol. II (1981).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rolski, T. Relationships between characteristics in periodic Poisson queues. Queueing Syst 4, 17–26 (1989). https://doi.org/10.1007/BF01150853

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01150853

Keywords