Abstract
This paper reviews the Fourier-series method for calculating cumulative distribution functions (cdf's) and probability mass functions (pmf's) by numerically inverting characteristic functions, Laplace transforms and generating functions. Some variants of the Fourier-series method are remarkably easy to use, requiring programs of less than fifty lines. The Fourier-series method can be interpreted as numerically integrating a standard inversion integral by means of the trapezoidal rule. The same formula is obtained by using the Fourier series of an associated periodic function constructed by aliasing; this explains the name of the method. This Fourier analysis applies to the inversion problem because the Fourier coefficients are just values of the transform. The mathematical centerpiece of the Fourier-series method is the Poisson summation formula, which identifies the discretization error associated with the trapezoidal rule and thus helps bound it. The greatest difficulty is approximately calculating the infinite series obtained from the inversion integral. Within this framework, lattice cdf's can be calculated from generating functions by finite sums without truncation. For other cdf's, an appropriate truncation of the infinite series can be determined from the transform based on estimates or bounds. For Laplace transforms, the numerical integration can be made to produce a nearly alternating series, so that the convergence can be accelerated by techniques such as Euler summation. Alternatively, the cdf can be perturbed slightly by convolution smoothing or windowing to produce a truncation error bound independent of the original cdf. Although error bounds can be determined, an effective approach is to use two different methods without elaborate error analysis. For this purpose, we also describe two methods for inverting Laplace transforms based on the Post-Widder inversion formula. The overall procedure is illustrated by several queueing examples.
Similar content being viewed by others
References
J. Abate and H. Dubner, A new method for generating power series expansions of functions, SIAM J. Numer. Anal. 5 (1968) 102–112.
J. Abate and W. Whitt, Transient behavior of regulated Brownian motion I: starting at the origin, Adv. Appl. Prob. 19 (1987) 560–598.
J. Abate and W. Whitt, Transient behavior of theM/M/1 queue via Laplace transforms, Adv. Appl. Prob. 20 (1988) 145–178.
J. Abate and W. Whitt, Approximations for theM/M/1 busy-period distribution, in:Queueing Theory and its Applications, Liber Amicorum for J.W. Cohen, eds. O.J. Boxma and R. Syski (North-Holland, Amsterdam, 1988) pp. 149–191.
J. Abate and W. Whitt, Simple spectral representations for the M/M/1 queue, Queueing Systems 3 (1988) 321–346.
J. Abate and W. Whitt, Numerical inversion of Laplace transforms of probability distributions, AT&T Bell Laboratories, Murray Hill, NJ (1991).
J. Abate and W. Whitt, Numerical inversion of probability generating functions, AT&T Bell Laboratories, Murray Hill, NJ (1991).
M. Abramowitz and I.A. Stegun,Handbook of Mathematical Functions (National Bureau of Standards, Washington, DC, 1972).
N.C. Beaulieu, An infinite series for the computation of the complementary probability distribution function of a sum of independent random variables and its application to the sum of Rayleigh random variables, IEEE Trans. Commun. COM-38 (1990) 1463–1474.
R. Bellman, R.E. Kalaba and J. Lockett,Numerical Inversion of the Laplace Transform. Application to Biology, Economics, Engineering and Physics (American Elsevier, New York, 1966).
B.C. Berndt,Ramanujan's Notebooks, Part II (Springer, New York, 1989).
D. Bertsimas and D. Nakazato, Transient and busy period analysis for theGI/G/1 queue; the method of stages, Queueing Systems 10 (1992) 153–184.
H. Bohman, A method to calculate the distribution function when the characteristic function is known, Ark. Mat. 4 (1960) 99–157.
H. Bohman, A method to calculate the distribution function when the characteristic function is known, BIT 10 (1970) 237–242.
H. Bohman, From characteristic function to distribution function via Fourier analysis, BIT 12 (1972) 279–283.
E.O. Brigham and R.E. Conley, Evaluation of cumulative probability distribution functions: improved numerical methods, IEEE Proc. 58 (1970) 1367–1368.
A.S. Carasso, Infinitely divisible pulses, continuous deconvolution, and the characterization of linear time invariant systems, SIAM J. Appl. Math. 47 (1987) 892–927.
H.S. Carslaw,Introduction to the Theory of Fourier's Series and Integrals, 3rd ed. (Dover, New York, 1930).
J.K. Cavers, On the fast Fourier transform inversion of probability generating functions, J. Inst. Math. Appl. 22 (1978) 275–282.
D.C. Champeney,A Handbook of Fourier Theorems (Cambridge University Press, New York, 1987).
K.L. Chung,A Course in Probability Theory, 2nd ed. (Academic Press, New York, 1974).
J.W. Cooley, P.A.W. Lewis and P.D. Welch, Application of the fast Fourier transform to the computation of Fourier integrals, Fourier series, and convolution integrals, IEEE Trans. AU-15 (1967) 79–84.
J.W. Cooley, P.A.W. Lewis and P.D. Welch, Historical notes on the fast Fourier transform, Proc. IEEE 55 (1967) 1675–1677.
J.W. Cooley, P.A.W. Lewis and P.D. Welch, The fast Fourier transform algorithm: programming considerations of sine, cosine and Laplace transforms, J. Sound Vib. 12 (1970) 315–337.
J.W. Cooley and J.W. Tukey, An algorithm for the machine computation of complex Fourier series, Math. Comp. 19 (1965) 297–301.
D.R. Cox,Renewal Theory (Methuen, London, 1962).
K.S. Crump, Numerical inversion of Laplace transforms using a Fourier-series approximation, J. ACM 23 (1976) 89–96.
J.N. Daigle, Queue length distributions from probability generating functions via discrete Fourier transforms, Oper. Res. Lett. 8 (1989) 229–236.
B. Davies and B.L. Martin, Numerical inversion of Laplace transforms: a critical evaluation and review of methods, J. Comp. Phys. 33 (1970) 1–32.
R.B. Davies, Numerical inversion of a characteristic function, Biometrika 60 (1973) 415–417.
R.B. Davies, The distribution of a linear combination ofX 2 random variables, Appl. Stat. 29 (1980) 323–333.
P.J. Davis and P. Rabinowitz,Methods of Numerical Integration, 2nd ed. (Academic Press, New York, 1984).
M.A.B. Deakin, Euler's version of the Laplace transform, Amer. Math. Monthly 87 (1980) 264–269.
G. de Balbine and J. Franklin, The calculation of Fourier integrals, Math. Comp. 20 (1966) 570–589.
F.R. de Hoog, J.H. Knight and A.N. Stokes, An improved method for numerical inversion of Laplace transforms, SIAM J. Sci. Stat. Comput. 3 (1982) 357–366.
G. Doetsch,Introduction to the Theory and Application of the Laplace Transformation (Springer, New York, 1974).
B.T. Doshi, Analysis of clocked schedules — high priority tasks, AT&T Tech. J. 64 (1985) 633–659.
B.T. Doshi and J. Kaufman, Sojourn times in anM/G/1 queue with Bernoulli feedback, in:Queueing Theory and Its Applications, Liber Amicorum for J.W. Cohen, eds. O.J. Boxma and R. Syski (North-Holland, Amsterdam, 1988).
H. Dubner, Partitions approximated by finite cosine series, Math. Computation, to appear.
H. Dubner and J. Abate, Numerical inversion of Laplace transforms by relating them to the finite Fourier cosine transform, J. ACM 15 (1968) 115–123.
F. Durbin, Numerical inversion of Laplace transforms: An efficient improvement to Dubner and Abate's method, Comput. J. 17 (1974) 371–376.
W. Feller,An Introduction to Probability Theory and its Applications, Vol. I, 3rd ed. (Wiley, New York, 1968).
W. Feller,An Introduction to Probability Theory and its Applications, Vol. II, 2nd ed. (Wiley, New York, 1971).
H.E. Fettis, Numerical calculation of certain definite integrals by Poisson's summation formula, Math. Tables Other Aids Comput. 9 (1955) 85–92.
B. Fornberg, Numerical differentiation of analytic functions, ACM Trans. Math. Software 7 (1981) 512–526.
J. Foster and F.B. Richards, The Gibbs phenomenon for piecewise-linear approximations, Amer. Math. Monthly 98 (1991) 47–49.
B.S. Garbow, G. Giunta, J.N. Lyness and A. Murli, Algorithm 662, A FORTRAN software package for the numerical inversion of the Laplace transform based on Weeks' method, ACM Trans. Meth. Software 14 (1988) 171–176.
W. Gautschi, On the condition of a matrix arising in the numerical inversion of the Laplace transform, Math. Comput. 23 (1969) 109–118.
D.P. Gaver, Jr., Observing stochastic processes and approximate transform inversion, Oper. Res. 14 (1966) 444–459.
D.P. Gaver, Jr., Diffusion approximations and models for certain congestion problems, J. Appl. Prob. 5 (1968) 607–623.
J. Gil-Palaez, Note on the inversion theorem, Biometrika 38 (1951) 481–482.
I.J. Good, Analogs of Poisson's sum formula, Amer. Math. Monthly 69 (1962) 259–266.
F.J. Harris, On the use of windows for harmonic analysis with the discrete Fourier transform, Proc. IEEE 66 (1978) 51–83.
P.G. Harrison, Laplace transform inversion and passage-time distributions in Markov processes, J. Appl. Prob. 27 (1990) 74–87.
H. Heffes and D.M. Lucantoni, A Markov modulated characterization of packetized voice and data traffic and related statistical multiplexer performance, IEEE J. Sel. Areas Commun. SAC-4 (1986) 856–868.
D.P. Heyman, Mathematical models of database degradation, ACM Trans. Database Sys. 7 (1982) 615–631.
G. Honig and U. Hirdes, A method for the numerical inversion of Laplace transforms, J. Comput. Appl. Math. 10 (1984) 113–129.
T. Hosono, Numerical inversion of Laplace transform, J. Inst. Elec. Eng. Jpn. 54–A64 (1979) 494 (in Japanese).
T. Hosono, Numerical inversion of Laplace transform and some applications to wave optics, Radio Sci. 16 (1981) 1015–1019.
T. Hosono,Fast Inversion of Laplace Transform by BASIC (Kyoritsu Publishers, Japan, 1984; in Japanese).
T. Hosono, Numerical algorithm for Taylor series expansion, Electronics and Communications in Japan 69 (1986) 10–18.
T. Hosono, K. Yuda and A. Itoh, Analysis of transient response of electromagnetic waves scattered by a perfectly conducting sphere. The case of back- and forward-scattering, Electronics and Communications in Japan 71 (1988) 74–86.
J.T. Hsu and J.S. Dranoff, Numerical inversion of certain Laplace transforms by the direct application of fast Fourier transform (FFT) algorithm, Comput. Chem. Engng. 11 (1987) 101–110.
S. Ichikawa and A. Kishima, Application of Fourier-series technique to inverse Laplace transform (Part I), Mem. Fac. Eng. Kyoto U. 34 (1972) 53–67.
S. Ichikawa and A. Kishima, Application of Fourier-series technique to inverse Laplace transform (Part II), Mem. Fac. Eng. Kyoto U. 35 (1973) 393–400.
D.L. Jagerman, An inversion technique for the Laplace transform with applications, Bell Sys. Tech. J. 57 (1978) 669–710.
D.L. Jagerman, An inversion technique for the Laplace transform, Bell Sys. Tech. J. 61 (1982) 1995–2002.
D.L. Jagerman, MATHCALC, AT&T Bell Laboratories, Holmdel, NJ (1987).
D.L. Jagerman, The approximation sequence of the Laplace transform, AT&T Bell Laboratories, Holmdel, NJ (1989).
R. Johnsonbaugh, Summing an alternating series, Amer. Math. Monthly 86 (1979) 637–648.
J. Keilson, Exponential spectra as a tool for the study of single-server systems, J. Appl. Prob. 15 (1978) 162–170.
D.G. Kendall, A summation formula for finite trigonometric integrals, Quart. J. Math. 13 (1942) 172–184.
J.E. Kiefer and G.H. Weiss, A comparison of two methods for accelerating the convergence of Fourier-series, Comput Math. Appl. 7 (1981) 527–535.
Y. Kida, UBASIC Version 8.12, Faculty of Science, Kanazawa University, 1-1 Marunouchi, Kanazawa 920, Japan (1990).
L. Kleinrock,Queueing Systems, Vol. 1: Theory (Wiley, New York, 1975).
H. Kobayashi,Modeling and Analysis (Addison-Wesley, Reading, MA, 1978).
S. Koizumi, A new method of evaluation of the Heaviside operational expression by Fourier series, Phil. Mag. 19 (1935) 1061–1076.
V.I. Krylov and N.S. Skoblya,A Handbook of Methods of Approximate Fourier Transformation and Inversion of the Laplace Transformation (Mir Publ., Moscow, 1977).
Y.K. Kwok and D. Barthez, An algorithm for the numerical inversion of Laplace transforms, Inverse Problems 5 (1989) 1089–1095.
E. Lukacs,Characteristic Functions, 2nd ed. (Hafner, New York, 1970).
Y.L. Luke, Simple formulas for the evaluation of some higher transcendental functions, J. Math. Phys. 34 (1955) 298–307.
J.N. Lyness, Differentiation formulas for analytic functions, Math. Comp. 22 (1968) 352–356.
J.N. Lyness and G. Giunta, A modification of the Weeks method for numerical inversion of the Laplace transform, Math. Comp. 47 (1986) 313–322.
J.N. Lyness and C.B. Moler, Numerical differentation of analytic functions, SIAM J. Numer. Anal. 4 (1967) 202–210.
W.F. Magnus, F. Oberhettinger and R.P. Soni,Formulas and Theorems for the Special Functions of Mathematical Physics (Springer, New York, 1966).
M.R. Middleton, Transient effects inM/G/1 queues, Ph.D. dissertation, Stanford University (1979).
P.L. Mills, Numerical inversion of z-transforms with application to polymer kinetics, Comp. Chem. 2 (1987) 137–151.
A. Murli and M. Rizzardi, Algorithm 682, Talbot's method for the Laplacc inversion problem, ACM Trans. Math. Software 16 (1990) 158–168.
N. Mullineux and J.R. Reed, Numerical inversion of integral transforms, Comput. Math. Appl. 3 (1977) 299–306.
R.E. Nancc, U.N. Bhat and B.G. Claybrook, Busy period analysis of a time sharing system: transform inversion, J. ACM 19 (1972) 453–463.
I.P. Natanson,Constructive Function Theory, Vol. I, Uniform Approximation (F. Ungar, New York, 1964).
W.D. Neumann, UBASIC: A public-domain BASIC for mathematics, Notices Amer. Math. Soc. 36 (1989) 557–559.
A.H. Nuttall, Numerical evaluation of cumulative probability distribution functions directly from characteristic functions, IEEE Proc. 57 (1969) 2071–2072.
F. Oberhettinger,Fourier Transforms of Distributions and Their Inverses (Academic, New York, 1973).
W.C. Obi, LAPLACE — A performance analysis library (PAL) module, AT&T Bell Laboratories, Holmdel, NJ (1987).
R. Piessens, A bibliography on numerical inversion of the Laplace transform and its applications, J. Comput. Appl. Math. 1 (1975) 115–128.
R. Piessens, and N.D.P. Dang, A bibliography on numerical inversion of the Laplace transform and its applications: A supplement, J. Comput. Appl. Math. 2 (1976) 225–228.
R. Piessens and R. Huysmans, Algorithm 619. Automatic numerical inversion of the Laplace transforms, ACM Trans. Math. Softw. 10 (1984) 348–353.
L.K. Platzman, J.C. Ammons and J.J. Bartholdi, III, A simple and efficient algorithm to compute tail probabilities from transforms, Oper. Res. 36 (1988) 137–144.
S.D. Poisson, Mémoire sur le Calcul Numérique des Integrales Défines, Mem. Acad. Sci. Inst. France 6 (1823) 571–602.
E.L. Post, Generalized differentiation, Trans. Amer. Math. Soc. 32 (1930) 723–781.
L.R. Rabiner and B. Gold,Theory and Application of Digital Signal Processing (Prentice-Hall, Englewood Cliffs, NJ, 1975).
A.A.G. Requicha, Direct computation of distribution functions from characteristic functions using the fast Fourier transform, IEEE Proc. 58 (1970) 1154–1155.
J. Riordan,Stochastic Service Systems (Wiley, New York, 1962).
S.O. Rice, Efficient evaluation of integrals of analytic functions by the trapezoidal rule, Bell Sys. Tech. J. 52 (1973) 707–722.
S.O. Rice, Numerical evaluation of integrals with infinite limits and oscillating integrands, Bell. Sys. Tech. J. 54 (1975) 155–164.
S. Ross,Stochastic Processes (Wiley, New York, 1983).
B. Schorr, Numerical inversion of a class of characteristic functions, BIT 15 (1975) 94–102.
M. Silverberg, Improving the efficiency of Laplace-transform Inversion for network analysis, Electronics Lett. 6 (1970) 105–106.
R.M. Simon, M.T. Stroot and G.H. Weiss, Numerical inversion of Laplace transforms with applications to percentage labeled experiments, Comput. Biomed. Res. 6 (1972) 596–607.
W.L. Smith, On the distribution of queueing times, Proc. Camb. Phil. Soc. 49 (1953) 449–461.
W. Squire, The numerical treatment of Laplace transforms: the Koizumi inversion method, Int. J. Num. Meth. Eng. 20 (1984) 1697–1702.
H. Stehfest, Algorithm 368. Numerical inversion of Laplace transforms, Commun. ACM 13 (1970) 479–49 (erratum 13, 624).
F. Stenger, (1981) Numerical methods based on Whittaker cardinal, or sine functions, SIAM Rev. 23 (1981) 165–224.
D. Stoyan,Comparison Methods for Queues and Other Stochastic Models (Wiley, Chichester, 1983).
A. Talbot, The accurate numerical inversion of Laplace transforms, J. Inst. Math. Appl. 23 (1979) 97–120.
D. ter Haar, An easy approximate method of determining the relaxation spectrum of a viscoelastic material, J. Polymer Sci. 6 (1951) 247–250.
H.C. Tijms,Stochastic Modelling and Analysis: A Computational Approach (Wiley, Chichester, 1986).
G.P. Tolstov,Fourier Series (Dover, New York, 1976).
B. Van Der Pol and H. Bremmer,Operational Calculus (Cambridge Press, 1955; reprinted, Chelsea, New York, 1987).
J.M. Varah, Pitfalls in the numerical solution of linear ill-posed problems, SIAM J. Sci. Stat. Comput. 4 (1983) 164–176.
F. Veillon, Une nouvelle méthode de calcul de la transformée inverse d'une fonction au sens de Laplace et de la deconvolution de deux fonctions, R.A.I.R.O. 6 (1972) 91–98.
F. Veillon, Algorithm 486. Numerical inversion of Laplace transform, Commun. AGM 17 (1974) 587–589.
W.T. Weeks, Numerical inversion of Laplace transforms using Laguerre functions, J. ACM 13 (1966) 419–426.
D.V. Widder, The inversion of the Laplace integral and the related moment problem, Trans. Amer. Math. Soc. 36 (1934) 107–200.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Abate, J., Whitt, W. The Fourier-series method for inverting transforms of probability distributions. Queueing Syst 10, 5–87 (1992). https://doi.org/10.1007/BF01158520
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF01158520
Keywords
- Computational probability
- numerical inversion of transforms
- characteristic functions
- Laplace transforms
- generating functions
- Fourier transforms
- cumulative distribution functions
- calculating tail probabilities
- numerical integration
- Fourier series
- Poisson summation formula
- the Fourier-series method
- the Gaver-Stehfest method