Skip to main content
Log in

Poisson's equation for queues driven by a Markovian marked point process

  • Published:
Queueing Systems Aims and scope Submit manuscript

Abstract

LetV t be the virtual waiting time at timet in a queue having marked point process input generated by a finite Markov process {Jt}, such that in addition to Markovmodulated Poisson arrivals there may also be arrivals at jump times of {Jt}. In this setting, Poisson's equation isA g=−f whereA is the infinitesimal generator of {(Vt, Jt)}. It is shown that the solutiong can be expressed asKf for some suitable kernelK, and the explicit form ofK is evaluated. The results are applied to compute limiting variance constants for (normalized) time averages of functionsf(V t, Jt), in particularf(V t,Jt)=Vt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Asmussen,Applied Probability and Queues (Wiley, Chichester New York, 1987).

    Google Scholar 

  2. S. Asmussen, Ladder heights and the Markov-modulatedM/G/1 queue, Stoch. Proc. Appl. 37 (1991) 313–326.

    Google Scholar 

  3. S. Asmussen, Queueing simulation in heavy traffic, Math. Oper. Res. 17 (1992) 84–111.

    Google Scholar 

  4. S. Asmussen and G. Koole, Marked point processes as limits of Markovian arrival streams, J. Appl. Probab. 30 (1993) 365–372.

    Google Scholar 

  5. S. Asmussen and D. Perry, On cycle maxima, first passage problems and extreme value theory for queues, Stoch. Models 8 (1992) 421–458.

    Google Scholar 

  6. R.N. Bhattacharya, On the functional central limit theorem and the law of the iterated logarithm for Markov processes, Z. Wahrscheinlichkeitsth. verw. Geb. 60 (1982) 185–201.

    Google Scholar 

  7. N. Blomquist, The covariance function of theM/G/1 queueing system, Skand. Aktuarrietidsskr. 50 (1967) 157–164.

    Google Scholar 

  8. E. Çinlar, Markov additive processes. II, Z. Wahrscheinlichkeitsth. verw. Geb. 24 (1972) 93–121.

    Google Scholar 

  9. D.J. Daley, The serial correlation of waiting times in a stationary single server queue, J. Austr. Math. Soc. 8 (1968) 683–699.

    Google Scholar 

  10. S. Ethier and T.G. Kurtz,Markov Processes: Characterization and Convergence (Wiley, New York, 1985).

    Google Scholar 

  11. P. Franken, D. König, U. Arndt and V. Schmidt,Queues and Point Processes (Akademie-Verlag, Berlin, 1981).

    Google Scholar 

  12. P.W. Glynn, Poisson's equation for the recurrentM/G/1 queue, Adv. Appl. Probab. (1985).

  13. A. Graham,Kronecker Products and Matrix Calculus with Applications (Ellis Horwood, Chichester, 1981).

    Google Scholar 

  14. A. Gut,Stopped Random Walks (Springer, New York, 1988).

    Google Scholar 

  15. U. Hermann, Ein Approximationssatz für Verteilungen stationärer zufälliger Punktfolgen, Math. Nachrichten 30 (1965) 377–381.

    Google Scholar 

  16. H. Kunita, Absolute continuity of Markov processes and generators, Nagoya Math. J. 36 (1969) 1–26.

    Google Scholar 

  17. D. Lucantoni, New results on the single server queue with a batch Markovian arrival process, Stoch. Models 7 (1991) 1–46.

    Google Scholar 

  18. D. Lucantoni, TheMAP/G/1 queue: a tutorial (1993).

  19. D. Lucantoni, K.S. Meier-Hellstern and M.F. Neuts, A single server queue with server vacations and a class of non-renewal arrival processes, Adv. Appl. Prob. 22 (1990) 676–705.

    Google Scholar 

  20. P.-A. Meyer, L'operateur carré du champ,Seminaire de probabilities X, Lecture Notes in Mathematics 511 (Springer, 1976) pp. 142–161.

  21. M.F. Neuts, A versatile Markovian point process, J. Appl. Prob. 16 (1977) 764–779.

    Google Scholar 

  22. M.F. Neuts,Matrix-Geometric Solutions in Stochastic Models (Johns Hopkins University Press, Baltimore, 1981).

    Google Scholar 

  23. J. Neveu, Potentiel Markovien recurrent des chaines de Harris, Ann. Inst. Fourier 22 (1972) 85–130.

    Google Scholar 

  24. E. Nummelin, On the Poisson equation in the potential theory of a single kernel, Math. Scand. 68 (1991) 59–82.

    Google Scholar 

  25. G. Pagurek and C.M. Woodside, The sum of serial correlations of waiting and system time inGI/G/1 queues, Oper. Res. 27 (1979) 755–766.

    Google Scholar 

  26. V. Ramaswami, TheN/G/1 queue and its detailed analysis, Adv. Appl. Prob. 12 (1980) 222–261.

    Google Scholar 

  27. G.J.K. Regterschot and J.H.A. de Smit, The queueM/G/1 with Markov-modulated arrivals and services, Math. Oper. Res. 11 (1986) 465–483.

    Google Scholar 

  28. D. Revuz,Markov Chains (North-Holland, New York, 1984).

    Google Scholar 

  29. M. Rudemo, Point processes generated by transitions of a Markov chain, Adv. Appl. Prob. 5 (1973) 262–286.

    Google Scholar 

  30. B. Sengupta, The semi-Markov queue: theory and applications, Stoch. Models 6 (1990) 383–413.

    Google Scholar 

  31. A. Shiryayev, Martingales, recent developments, results and applications, Int. Statist. Rev. 49 (1981) 199–233.

    Google Scholar 

  32. R.W. Wolff,Stochastic Modeling and the Theory of Queues (Prentice-Hall, 1990).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asmussen, S., Bladt, M. Poisson's equation for queues driven by a Markovian marked point process. Queueing Syst 17, 235–274 (1994). https://doi.org/10.1007/BF01158696

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01158696

Keywords

Navigation