Skip to main content
Log in

UP and the low and high hierarchies: A relativized separation

  • Published:
Mathematical systems theory Aims and scope Submit manuscript

Abstract

The low and high hierarchies within NP were introduced by Schöning in order to classify sets in NP. It is not known whether the low and high hierarchies include all sets in NP. In this paper, using the circuit lower-bound techniques of Håstad and Ko, we construct an oracle set relative to which UP contains a language that is not in any level of the low hierarchy and such that no language in UP is in any level of the high hierarchy. Thus, in order to prove that UP contains languages that are in the high hierarchy or that UP is contained in the low hierarchy, it is necessary to use nonrelativizable proof techniques. Since it is known that UPA is low for PPA for all setsA, our result also shows that the interaction between UP and PP is crucial for the lowness of UP for PP; changing the base class to any level of the polynomial-time hierarchy destroys the lowness of UP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Babai. Trading group theory forrandomness. InProc. 17th Annual ACM Symposium on Theory of Computing, pages 421–429, 1985.

  2. J. Balcázar, J. Diaz, and J. Gabarró.Structural Complexity I. Springer-Verlag, Berlin, 1988.

    Google Scholar 

  3. R. Beigel. Perceptrons, pp, and the polynomial-time hierarchy. InProc. Seventh Annual IEEE Structure in Complexity Theory Conference, pages 14–19, 1992.

  4. R. Beigel. Personal correspondence, 1992.

  5. T. Baker, J. Gill, and R. Solovay. Relativizations of the P = ? NP question.S1AM J. Comput., 4(4):431–441, 1975.

    Article  MathSciNet  MATH  Google Scholar 

  6. M. Blum and R. Impagliazzo. Generic oracles and oracle classes. InProc. 28th IEEE Symposium on Foundations of Computer Science, pages 118–126, 1987.

  7. S. Fenner, L. Fortnow, and S. Kurtz. Gap-definable counting classes. InProc. Structure in Complexity Theory Sixth Annual Conference, pages 30–42, 1991.

  8. M. Furst, J. Saxe, and M. Sipser. Parity, circuits, and the polynomial-time hierarchy. InProc. 22nd IEEE Symposium on Foundations of Computer Science, pages 260–270, 1981.

  9. M. Furst, J. Saxe, and M. Sipser. Parity, circuits, and the polynomial-time hierarchy.Math. Systems Theory, 17:13–27, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  10. J. Grollman and A. Selman. Complexity measures forpublic-key cryptosystems.SIAMJ. Comput., 17(2):309–335, 1988.

    Article  Google Scholar 

  11. J. D. Håstad. Computational limitations for small-depth circuits. Ph.D. thesis, Massachusetts Institute of Technology, 1987.

  12. J. Hartmanis and L. Hemachandra. One-way functions and non-isomorphism of NP-complete sets.Theoret. Comput. Sci., 81(1):155–163, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  13. K. Ko. Relitivized polynomial time hierarchies having exactlyk levels.SIAM J. Comput., 18(2):392–408, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  14. K. Ko. Separating the low and high hierarchies by oracles.Inform, and Comput., 90(2): 156–177, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  15. K. Ko and U. Schöning. On circuit-size and the low hierarchy in NP.SIAMJ. Comput., 14(1):41–51, 1985.

    Article  MATH  Google Scholar 

  16. J. Köhler, U. Schöning, S. Toda, and J. Torán. Turing machines with few accepting computations and low sets for PP.J. Comput. System Sci., 44(2):272–286, 1992.

    Article  MathSciNet  Google Scholar 

  17. U. Schöning. A low and a high hierarchy within NP.J. Comput. System Sci., 27:14–28, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  18. U. Schöning.Complexity and Structure. Lecture Notes in Computer Science, Vol. 211. Springer-Verlag, Berlin, 1986.

    Google Scholar 

  19. M. Sheu and T. Long. The extended low hierarchy is an infinite hierarchy. Technical Report OSU-CISRC-8/91-TR22, The Ohio State University, 1991.

  20. L. Stockmeyer. The polynomial-time hierarchy.Theoret. Comput. Sci., 3:1–22, 1976.

    Article  MathSciNet  Google Scholar 

  21. C. Wrathall. Complete sets and the polynomial hierarchy.Theoret. Comput. Sci., 3:23–33, 1976.

    Article  MathSciNet  Google Scholar 

  22. A. Yao. Separating the polynomial-time hierarchy by oracles. InProc. 26th IEEE Symposium on Foundations of Computer Science, pages 1–10, 1985.

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported in part by NSF Grant CCR-8909071.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheu, M.J., Long, T.J. UP and the low and high hierarchies: A relativized separation. Math. Systems Theory 29, 423–449 (1996). https://doi.org/10.1007/BF01184809

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01184809

Keywords

Navigation