Skip to main content
Log in

Strong self-reducibility precludes strong immunity

  • Published:
Mathematical systems theory Aims and scope Submit manuscript

Abstract

Do self-reducible sets inherently lack immunity from deterministic polynomial time? Though this is unlikely to be true in general, in this paper we prove that sufficiently strong self-reducibility precludes sufficiently strong immunity from deterministic polynomial time. In particular, we prove that NT isnot P balanced immune. However, we prove that NT, a class whose sets have very strong self-reducibility properties, is P bi-immune relative to a generic oracle. Thus, the previous result cannot be relativizably extended to bi-immunity. We also prove that NP and ⊕P are both P balanced immune relative to a random oracle; the former provides the strongest known relativized separation of NP from P.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Allender. Oracles versus proof techniques that do not relativize. InProceedings of the 1990 SI-GAL International Symposium on Algorithms, pages 39–52. Lecture Notes in Computer Science, Vol. 450. Springer-Verlag, Berlin, 1990.

    Google Scholar 

  2. L. Babai. A random oracle separates PSPACE from the polynomial hierarchy.Information Processing Letters, 26(1):51–53, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  3. R. Beigel. Bi-immunity results for cheatable sets.Theoretical Computer Science, 73:249–263, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  4. C. Bennett and J. Gill. Relative to a random oracleA, PA NPA ≠ coNPA with probability 1.SIAM Journal on Computing, 10:96–113, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  5. T. Baker, J. Gill, and R. Solovay. Relativizations of the P =? NP question.SIAM Journal on Computing, 4(4):431–442, 1975.

    Article  MathSciNet  MATH  Google Scholar 

  6. M. Blum and R. Impagliazzo. Generic oracles and oracle classes. InProceedings of the 28th IEEE Symposium on Foundations of Computer Science, pages 118–126, October 1987.

  7. D. Bruschi. Strong separations of the polynomial hierarchy with oracles: Constructive separations by immune and simple sets.Theoretical Computer Science, 102:215–252, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  8. J. Balcázar and U. Schöning. Bi-immune sets for complexity classes.Mathematical Systems Theory, 18:1–10, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  9. J. Cai. Probability one separation of the Boolean hierarchy. InProceedings of the 4th Annual Symposium on Theoretical Aspects of Computer Science, pages 148–158. Lecture Notes in Computer Science, Vol. 247. Springer-Verlag, Berlin, 1987.

    Google Scholar 

  10. J. Cai. With probability one, a random oracle separates PSPACE from the polynomial-timehierarchy.Journal of Computer and System Sciences, 38(1):68–85, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  11. R. Chang, B. Chor, O. Goldreich, J. Hartmanis, J. Håstad, and D. Ranjan. The random oracle hypothesis is false.Journal of Computer and System Sciences, 49:24–39, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  12. J. Cai, T. Gundermann, J. Hartmanis, L. Hemachandra, V. Sewelson, K. Wagner, and G. Wechsung. The boolean hierarchy I: Structural properties.SIAM Journal on Computing, 17(6):1232–1252, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  13. J. Cai, T. Gundermann, J. Hartmanis, L. Hemachandra, V. Sewelson, K. Wagner, and G. Wechsung. The boolean hierarchy II: Applications.SIAM Journal on Computing, 18(1):95–111, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  14. M. Dowd. Generic oracles, uniform machines, and codes.Information and Computation, 96:65–76, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  15. D. Eppstein, L. Hemachandra, J. Tisdall, and B. Yener. Simultaneous strong separations of probabilistic and unambiguous complexity classes.Mathematical Systems Theory, 25(1):23–36, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  16. S. Fenner, L. Fortnow, S. Kurtz, and L. Li. An oracle builder's toolkit. InProceedings of the 8th Structure in Complexity Theory Conference, pages 120–131. IEEE Computer Society Press, New York, 1993.

    Google Scholar 

  17. L. Fortnow. The role of relativization in complexity theory.Bulletin of the EATCS, (52):229–244, 1994.

    MATH  Google Scholar 

  18. J. Foster. The generic oracle hypothesis is false.Information Processing Letters, 45:59–62, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  19. L. Fortnow and M. Sipser. Are there interactive protocols for co-NP?Information Processing Letters, 28:249–251, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  20. J. Geske. Nondeterminism, bi-immunity and almost-everywhere complexity.IEICE Transactions on Communications/Electronics/lnformation and Systems, E76, 1993.

  21. J. Geske and J. Grollmann. Relativizations of unambiguous and random polynomial time classes.SIAM Journal on Computing, 16(2):511–519, 1986.

    Article  MathSciNet  Google Scholar 

  22. J. Goldsmith, L. Hemachandra, D. Joseph, and P. Young. Near-testable sets.SIAM Journal on Computing, 20(3):506–523, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  23. J. Gill. Computational complexity of probabilistic Turing machines.SIAM Journal on Computing, 6(4):675–695, 1977.

    Article  MathSciNet  MATH  Google Scholar 

  24. J. Goldsmith, D. Joseph, and P. Young. Self-reducible, P-selective, near-testable, and P-cheatable sets: The effect of internal structure on the complexity of a set. InProceedings of the 2nd Structure in Complexity Theory Conference, pages 50–59, 1987.

  25. J. Goldsmith, D. Joseph, and P. Young. A note on bi-immunity and p-closeness of p-cheatable sets in P/Poly.Journal of Computer and System Sciences, 46:349–362, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  26. L. Goldschlager and I. Parberry. On the construction of parallel computers from various bases of boolean functions.Theoretical Computer Science, 43:43–58, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  27. J. Grollmann and A. Selman. Complexity measures for public-key cryptosystems.SIAM Journal on Computing, 17(2):309–335, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  28. R. Gavaldà, L. Torenvliet, O. Watanabe, and J. Balcázar. Generalized Kolmogorov complexity in relativized separations. InProceedings of the 15th Symposium on Mathematical Foundations of Computer Science, pages 266–276. Lecture Notes in Computer Science, Vol. 452. Springer-Verlag, Berlin, 1990.

    Google Scholar 

  29. J. Hartmanis, R. Chang, S. Chari, D. Ranjan, and P. Rohatgi. Relativization: A revisionistic retrospective.Bulletin of the EATCS, (47): 144–153, 1992.

  30. J. Hartmanis, R. Chang, D. Ranjan, and P. Rohatgi. Structural complexity theory: Recent surprises. InProceedings of the 2nd Scandinavian Workshop on Algorithm Theory, pages 1–12. Lecture Notes in Computer Science, Vol. 447. Springer-Verlag, Berlin, 1990.

    Google Scholar 

  31. L. Hemaspaandra and S. Jha. Defying upward and downward separation.Information and Computation, 121(1):1–13, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  32. L. Hemaspaandra, S. Jain, and N. Vereshchagin. Banishing robust Turing completeness.International Journal of Foundations of Computer Science, 4(3):245–265, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  33. L. Hemachandra and R. Silvestri. Easily checked generalized self-reducibility.SIAM Journal on Computing, 24(4):840–858, 1995.

    Article  MathSciNet  Google Scholar 

  34. S. Kurtz, S. Mahaney, and J. Royer. Average dependence and random oracles. InProceedings of the 7th Structure in Complexity Theory Conference, pages 306–317. IEEE Computer Society Press, New York, 1992.

    Google Scholar 

  35. K. Ko. A note on separating the relativized polynomial time hierarchy by immune sets.RAIRO Theoretical Informatics and Applications, 24(3):229–240, 1990.

    MATH  Google Scholar 

  36. S. Kurtz. Notions of weak genericity.Journal of Symbolic Logic, 48:764–770, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  37. S. Kurtz. On the random oracle hypothesis.Information and Computation, 57:40–47, 1983.

    MathSciNet  MATH  Google Scholar 

  38. H. Müller. A note on balanced immunity.Mathematical Systems Theory, 26:157–167, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  39. M. Mundhenk and R. Schuler. Random languages for nonuniform complexity classes.Journal of Complexity, 7:296–310, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  40. C. Papadimitriou and S. Zachos. Two remarks on the power of counting. InProceedings of the 6th GI Conference on Theoretical Computer Science, pages 269–276. Lecture Notes in Computer Science, Vol. 145. Springer-Verlag, Berlin, 1983.

    Google Scholar 

  41. H. Rogers, Jr.The Theory of Recursive Functions and Effective Computability. McGraw-Hill, New York, 1967.

    Google Scholar 

  42. K. Regan and J. Royer. On closure properties of bounded 2-sided error complexity classes.Mathematical Systems Theory, 28:229–244, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  43. A. Shamir. IP = PSPACE.Journal of the ACM, 39(4):869–877, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  44. U. Schöning and R. Book. Immunity, relativization, and nondeterminism.SIAM Journal on Computing, 13:329–337, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  45. L. Torenvliet. Structural concepts in relativized hierarchies, 1986. Ph.D. thesis, Universiteit van Amsterdam.

  46. L. Torenvliet and P. van Emde Boas. Diagonalization methods in a polynomial setting. InProceedings of the 1st Structure in Complexity Theory Conference, pages 330–346. Lecture Notes in Computer Science, Vol. 223. Springer-Verlag, Berlin, 1986.

    Google Scholar 

  47. L. Torenvliet and P. van Emde Boas. Simplicity, immunity, relativizations and nondeterminism.Information and Computation, 80:1–17, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  48. N. Vereshchagin. Relationships between NP-sets, co-NP-sets, and P-sets relative to random oracles. InProceedings of the 8th Structure in Complexity Theory Conference, pages 132–138. IEEE Computer Society Press, New York, 1993.

    Google Scholar 

  49. R. Wilber. Randomness and the density of hard problems. InProceedings of the 24th IEEE Symposium on Foundations of Computer Science, pages 335–342. IEEE Computer Society Press, New York, 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part by Grants NSF-CCR-8957604, NSF-INT-9116781/JSPS-ENG-207, NSF-INT-9513368/DAAD-315-PRO-fo-ab, and NSF-CCR-9322513.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hemaspaandra, L.A., Zimand, M. Strong self-reducibility precludes strong immunity. Math. Systems Theory 29, 535–548 (1996). https://doi.org/10.1007/BF01184814

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01184814

Keywords

Navigation