Skip to main content
Log in

Guest Editor's foreword

  • Published:
Algorithmica Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Altschul, S., W. Gish, W. Miller, E. Myers, and D. Lipman, A basic local alignment search tool,J. Mol. Biol. 215 (1990), 403–410.

    Google Scholar 

  2. Blum, A., T. Jiang, M. Li, J. Tromp, and M. Yannakakis, Linear approximation of shortest superstrings,Proc. 23rd ACM Symp. on Theory of Computation, 1991, pp. 328–336.

  3. Chang, W. I. and E. L. Lawler, Approximate matching in sublinear expected time,Proc. 31st IEEE Symp. on Foundations of Computer Science, 1990, pp. 116–124.

  4. Coulson, A., J. Sulston, S. Brenner, and J. Karn, Toward a physical map of the genome of the nematode,Caenorhabditis elegans, Proc. Nat. Acad. Sci. USA 83 (1986), 7821–7825.

    Article  Google Scholar 

  5. Craig, A. G., D. Nizetic, J. D. Hoheisel, G. Zehetner, and H. Lehrach, Ordering of cosmid clones covering the Herpes simplex virus type-I (HSV-I) genome—a test case for finger-printing by hybridization,Nucleic Acids Res. 18 (1990), 2653–2660.

    Article  Google Scholar 

  6. Doolittle, R. F. (editor), Molecular evolution: Computer analysis of protein and nucleic acid sequence,Methods Enzymology 183 (1990).

  7. Doolittle, R. F., M. W. Hunkapillar, L. E. Hood, S. G. Devare, K. C. Robbins, S. A. Aaronson, and H. N. Antoniades, Simian sarcomaonc gene, v-sis, is derived from the gene (or genes) encoding a platelet-derived growth factor,Science 221 (1983), 275–277.

    Article  Google Scholar 

  8. Eppstein, D., Z. Galil, R. Giancarlo, and G. F. Italiano, Sparse dynamic programming, I & II,J. Assoc. Comput. Mach. 39 (1992), 519–567.

    MATH  MathSciNet  Google Scholar 

  9. Felsenstein, J., Numerical methods for inferring evolutionary trees,Quart. Rev. Biol. 57 (1982), 379–404.

    Article  Google Scholar 

  10. Fields, C., and C. Soderlund, gm: a practical tool for automating DNA sequence analysis,Comput. Appl. Bio. Sci. 6 (1990), 263–270.

    Google Scholar 

  11. Fitch, W. M., T. F. Smith, and W. W. Ralph, Mapping the order of DNA restriction fragments,Gene 22 (1983), 19–29.

    Article  Google Scholar 

  12. Gingeras, T. R., J. P. Milazzo, D. Sciaky, and R. J. Roberts, Computer programs for the assembly of DNA sequences,Nucleic Acids Res. 7 (1979), 529–545.

    Article  Google Scholar 

  13. Gotoh, O., An improved algorithm for matching biological sequences,J. Mol. Biol. 162 (1982), 705–708.

    Article  Google Scholar 

  14. Guigo, R., S. Knudsen, N. Drake, and T. Smith. Prediction of gene structure,J. Mol Biol. 226 (1992), 141–157.

    Article  Google Scholar 

  15. Hirschberg, D. S., A linear space algorithm for computing maximal common subsequences,Comm. ACM 18 (1975), 341–343.

    Article  MATH  MathSciNet  Google Scholar 

  16. Huang, X., and W. Miller, A time-efficient, linear-space local similarity algorithm,Adv. Appl. Math. 12 (1991), 337–357.

    Article  MATH  MathSciNet  Google Scholar 

  17. Kohara, Y., A. Akiyama, and K. Isono, The physical map of the wholeE. coli chromosome: Application of a new strategy for rapid analysis and sorting of a large genomic library,Cell 50 (1987), 495–508.

    Article  Google Scholar 

  18. Lander, E. S., and M. S. Waterman, Genomic mapping by fingerprinting random clones: a mathematical analysis,Genomics 2 (1988), 231–239.

    Article  Google Scholar 

  19. Lipman, D. J., and W. R. Pearson, Rapid and sensitive protein similarity searches,Science 227 (1985), 1435–1441.

    Article  Google Scholar 

  20. Maxam, A. M., and W. Gilbert, A new method for sequencing DNA,Proc. Nat. Acad. Sci. USA 74 (1977), 560–564.

    Article  Google Scholar 

  21. Myers, E. W., A sublinear algorithm for approximate keyword searching,Algorithmica 12 (1994), 345–374.

    Article  MATH  MathSciNet  Google Scholar 

  22. Nolan, G. P., C. V. Maina, and A. A. Szalay, Plasmid mapping computer program,Nucleic Acids Res. 12 (1984), 717–729.

    Article  Google Scholar 

  23. Olson, M. V., J. E. Dutchik, M. Y. Graham, G. M. Brodeur, C. Helms, M. Frank, M. MacCollin, R. Scheinman, and T. Frand, Random-clone strategy for genomic restriction mapping in yeast,Proc. Nat. Acad. Sci. USA 83 (1986), 7826–7830.

    Article  Google Scholar 

  24. Pearson, W., Automatic construction of restriction site maps,Nucleic Acids Res. 10 (1982), 217–227.

    Article  Google Scholar 

  25. Peltola, H., H. Söderlund, and E. Ukkonen, SEQUAID: a DNA sequence assembly program based on a mathematical model,Nucleic Acids Res. 12 (1984), 307–321.

    Article  Google Scholar 

  26. Sanger, F., S. Nicklen, and A. R. Coulson, DNA sequencing with chain-terminating inhibitors,Proc. Nat. Acad. Sci. USA 74 (1977), 5463–5467.

    Article  Google Scholar 

  27. Sankoff, D., Minimum mutation trees of sequences,SIAM J. Appl. Math. 28 (1975), 35–42.

    Article  MATH  MathSciNet  Google Scholar 

  28. Sankoff, D., G. Leduc, N. Antoine, B. Faquin, B. Franz Lang, and R. Cedergren, Gene order comparisons for phylogenetic inference: evolution of the mitochondrial genome,Proc. Nat. Acad. Sci. USA 89 (1992), 6575–6579.

    Article  Google Scholar 

  29. Schoniger, M., and M. S. Waterman, A local algorithm for DNA sequence alignment with inversions,Bull. Math. Biol. 54 (1992), 521–536.

    Google Scholar 

  30. Searls, D., Investigating the linguistics of DNA with definite clause grammars,Prof. N. American Conf. on Logic Programming, 1989, pp. 189–208.

  31. Snyder, E. E., and G. D. Stormo, Identification of coding regions in genomic DNA sequences: an application of dynamic programming and neural networks,Nucleic Acids Res. 21 (1993), 607–613.

    Article  Google Scholar 

  32. Staden, R., A strategy of DNA sequencing employing computer programs,Nucleic Acids Res. 6 (1979), 2601–2610.

    Article  Google Scholar 

  33. Turner, J., Approximation algorithms for the shortest common superstring problem,Inform. and Comput. 83 (1989), 1–20.

    Article  MATH  MathSciNet  Google Scholar 

  34. Uberbacher, E., and R. Mural, Locating protein-coding regions in human DNA sequences by a multiple sensor-neural network approach,Proc. Nat. Acad. Sci. USA 88 (1991), 11261–11265.

    Article  Google Scholar 

  35. Ukkonen, E., Approximate string-matching with q-grams and maximal matches,Theoret. Comput. Sci. 92 (1991), 191–211.

    Article  MathSciNet  Google Scholar 

  36. Waterman, M. S., and M. Eggert, A new algorithm for best subsequence alignments with applications to tRNA-rRNA comparison,J. Mol. Biol. 197 (1987), 723–728.

    Article  Google Scholar 

  37. Wu, S., and U. Manber, Fast text searching allowing errors,Comm. ACM 35 (1992), 83–90.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Myers, E.W. Guest Editor's foreword. Algorithmica 13, 1–6 (1995). https://doi.org/10.1007/BF01188579

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01188579

Navigation