Abstract
Consider ℤ[x 1,...,x n], the multivariate polynomial ring over integers involvingn variables. For a fixedn, we show that the ideal membership problem as well as the associated representation problem for ℤ[x 1,...,x n] are primitive recursive. The precise complexity bounds are easily expressible by functions in the Wainer hierarchy.
Thus, we solve a fundamental algorithmic question in the theory of multivariate polynomials over the integers. As a direct consequence, we also obtain a solution to certain foundational problem intrinsic to Kronecker's programme for constructive mathematics and provide an effective version of Hilbert's basis theorem. Our original interest in this area was aroused by Edwards' historical account of theKronecker's problem in the context of Kronecker's version of constructive mathematics.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Ayoub, C. W.: On Constructing Bases for Ideals in Polynomial Rings over the Integers. J. Number Theory17, 204–225 (1983)
Bayer, D., Stillman, M.: On the Complexity of Computing Syzygies. J. Symbolic Comput.6, 135–147 (1988)
Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal. Ph.D. thesis, University of Innsbruck, Austria, 1965
Dubé, T. W.: Quantitative Analysis Problems in Computer Algebra: Gröbner Bases and the Nullstellensatz. Ph.D. thesis, Courant Institute of Mathematical Sciences, New York University, New York, 1989
Dubé, T., Mishra, B., Yap, C. K.: Admissible Orderings and Bounds for Gröbner Bases Normal Form Algorithm. Technical Report No. 88, Courant Institute of Mathematical Sciences, New York University, New York, 1986
Edwards, H. M.: Dedekind's Invention of Ideals. Bull Lond. Math. Soc.15, 8–17 (1983)
Edwards, H. M.: Kronecker's Views on the Foundations of Mathematics. In: Proceedings of a Conference held at Vassar College in June 1988, Rowe, D., McCleary, J. (eds.). Boston, Massachusetts: Academic Press 1990
Gallo, G.: Complexity Issues in Computational Algebra. Ph.D. thesis, Courant Institute of Mathematical Sciences, New York University, New York, 1992
Gallo, G., Mishra, B.: A Solution to Kronecker's Problem. Technical Report No. 600, Courant Institute of Mathematical Sciences, New York University, New York, 1992
Kandri-Rody, A., Kapur, D.: Algorithms for Computing the Gröbner Bases of Polynomial Ideals over Various Euclidean Rings. In: Proceedings of EUROSAM '84, Lecture Notes in Computer Science, Vol. 174. Fitch, J. (ed.) pp. 195–206, Berlin, Heidelberg, New York: Springer 1984
Keaton, J., Solovay, R.: Rapidly Growing Ramsey Functions. Unpublished manuscript, 1980
Kronecker, L., Hensel, K.: Vorlesungen über Zahlentheorie. Leipzig, 1901
Kronecker, L.: Leopld Kronecker's Werke. Hensel, K. (ed.) Vol. 3 Leipzig, Druck und Verlag von B. G. Teubner, 1895
Lankford, D.: Generalized Gröbner Bases: Theory and Applications. In: Rewriting Techniques and Applications, Lecture Notes in Computer Science, Vol 355. Dershowitz, N. (ed.) pp. 203–221. Berlin, Heidelberg, New York: Springer 1989
Lazard, D.: Gröbner Bases, Gaussian Elimination and Resolution of Systems of Algebraic Equations. In: Proceedings for EUROCAL '83, Lecture Notes in Computer Science, Vol. 162, pp. 146–156. Berlin, Heidelberg, New York: Springer 1983
Mishra, B.: Algorithmic Algebra. Berlin, Heidelberg, New York: Springer 1993
Mishra, B., Yap, C.: Notes on Gröbner Bases. Information Sciences48, 219–252 (1989)
Mayr, E. W., Meyer, A. R.: The Complexity of the Word Problems for Commutative Semigroups and Polynomial Ideals. Adv. Math.64, 305–329 (1982)
Möller, H. M.: On the Construction of Gröbner Bases Using Syzygies. J. Symb. Comput.6, 345–360 (1988)
Moreno Socias, G.: Length of Polynomial Ascending Chains and Primitive Recursiveness. Notes Informelles De Calcul Formel 19, Équipe de Calcul Formel, Centre de Mathématiques, École Polytechnique, F-91128 Palaiseau cedex, France, 1992
Paris, J., Harrington, L.: A Mathematical Incompleteness in Peano Arithmetic. In: Handbook of Mathematical Logic. Barwise, J. (ed.) pp. 1113–1142 (1977)
Richman, F.: Constructive Aspects of Noetherian Rings. Proceedings Am. Math. Soc.,44, 436–441 (1974)
Scidenberg, A.: What Is Noetherian? Rend. Sem. Mat. Fis. Milano44, 55–61 (1974)
Scidenberg, A.: An Elimination Theory for Differential Algebra. University of California Pub. in Math. New series, University of California, Berkeley and Los Angeles3, 31–66 (1956)
Sims, C.: The Role of Algorithms in the Teaching of Algebra. In: Topics in Algebra. Newman, M. F. (ed.) pp. 95–107. Lecture Notes in Mathematics, Vol. 697. Canberra: Proc 1978. Berlin, Heidelberg, New York: Springer 1978
Simmons, H.: The Solution of a Decision Problems for Several Classes of Rings. Pacific J. Math.34, 547–557 (1970)
Szekeres, G.: A Canonical Basis for the Ideals of a Polynomial Domain. Am. Mathematical Monthly59(6), 379–386 (1952)
Szekeres, G.: Metabelian Groups with Two Generators. In: Proceedings of the International Conference Theory of Groups, Canberra '65, pp. 323–346, Gordon and Breach 1967
Trotter, P. G.: Ideals in ℤ [x,y]. Acta Math. Acad. Sci. Hungar32, 63–73 (1978)
Wainer, S. S.: A Classification of the Ordinal Recursive Functions. Arch. Math. Logik13, 136–153 (1970)
Weber, H.: Leopold Kronecker. Jahresber. D.M.-V., Vol. 2, 1892
Weispfenning, V.: Some Bounds for the Construction of Gröbner Bases, Preprint, Mathematisches Institut der Universität, Heidelberg, Germany, 1987
Yap., C. K.: A New Lower Bound Construction for Commutative Thue Systems with Applications. J. Symp. Comput.12, 1–27 (1991)
Zacharias, G.: Generalized Gröbner Bases in Commutative Polynomial Rings. Master's thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts, 1978
Author information
Authors and Affiliations
Additional information
Supported by an Italian grant Italian MURST 40% Calcolo Algebraico e Simbolico 1993 and an NSF grant: #CCR-9002819.
Rights and permissions
About this article
Cite this article
Gallo, G., Mishra, B. A solution to Kronecker's problem. AAECC 5, 343–370 (1994). https://doi.org/10.1007/BF01188747
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF01188747