Skip to main content
Log in

Computing the intersection-depth of polyhedra

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

Given two intersecting polyhedraP, Q and a directiond, find the smallest translation ofQ alongd that renders the interiors ofP andQ disjoint. The same problem can also be posed without specifying the direction, in which case the minimum translation over all directions is sought. These are fundamental problems that arise in robotics and computer vision. We develop techniques for implicitly building and searching convolutions and apply them to derive efficient algorithms for these problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Agarwal. Ray shooting and other applications of spanning trees with low stabbing number.Proc. 5th ACM Symposium on Computational Geometry, pp. 315–325, 1989.

  2. A. Aggarwal, L. Guibas, J. Saxe, and P. Shor. A linear time algorithm for computing the Voronoi diagram of a convex polygon.Discrete and Computational Geometry, 4:591–604, 1989.

    Google Scholar 

  3. T. Asano. An efficient algorithm for finding the visibility polygons for a polygonal region with holes.Transactions of IECE of Japan, E-68:557–559, 1985.

    Google Scholar 

  4. B. S. Baker, S. F. Fortune, and S. R. Mahaney. Polygon containment under translation.Journal of Algorithms, 532–548, 1986.

  5. J. Bentley and T. A. Ottman. Algorithms for reporting and counting geometric intersections.IEEE Transactions on Computers, 28:643–647, 1979.

    Google Scholar 

  6. C. E. Buckley and L. J. Leifer. A proximity metric for continuum path planning.Proc. 9th International Joint Conference on Artificial Intelligence, pp. 1096–1102, 1985.

  7. S. A. Cameron and R. K. Culley. Determining the minimum translation distance between two convex polyhedra.Proc. IEEE International Conference on Robotics and Automation, pp. 591–596, 1986.

  8. B. Chazelle. Efficient polygon triangulation.Proc. IEEE Symposium on Foundations of Computer Science, pp. 220–230, 1990.

  9. B. Chazelle and D. Dobkin. Intersection of convex objects in two and three dimensions.Journal of the Association for Computing Machinery, 34:1–27, 1987.

    Google Scholar 

  10. F. Chin and C. A. Wang. Optimal algorithms for the intersection and the minimum distance problems between planar polygons.IEEE Transactions on Computers, 32:1203–1207, 1983.

    Google Scholar 

  11. D. Dobkin and D. Kirkpatrick. Fast detection of polyhedral intersections.Proc. ICALP '82, pp. 154–165. Lecture Notes in Computer Science, Vol. 140. Springer-Verlag, Berlin, 1982.

    Google Scholar 

  12. D. Dobkin and D. Kirkpatrick. A linear algorithm for determining the separation of convex polyhedra.Journal of Algorithms, 6:381–392, 1985.

    Google Scholar 

  13. D. Dobkin and D. Kirkpatrick. Determining the separation of preprocessed polyhedra—a unified approach.Proc. ICALP '90, pp. 400–413. Lecture Notes in Computer Science, Vol. 443. Springer-Verlag, Berlin, 1990.

    Google Scholar 

  14. H. Edelsbrunner. Computing the extreme distances between two convex polygons.Journal of Algorithms, 6:213–224, 1985.

    Google Scholar 

  15. H. Edelsbrunner, L. Guibas, and J. Stolfi. Optimal point location in a monotone subdivision.SIAM Journal on Computing, 15:317–340, 1986.

    Google Scholar 

  16. H. El Gindy and D. Avis. A linear algorithm for computing the visibility polygon from a point.Journal of Algorithms, 2:186–197, 1981.

    Google Scholar 

  17. M. Garey, D. S. Johnson, F. P. Preparata, and R. E. Tarjan. Triangulating a simple polygon.Information Processing Letters, 7:175–179, 1978.

    Google Scholar 

  18. B. Grünbaum.Convex Polytopes. Wiley, New York, 1967.

    Google Scholar 

  19. L. Guibas, M. Overmars, and M. Sharir. Intersecting line segments, ray shooting, and other applications of geometric partitioning techniques. InProc. First Scandinavian Workshop on Algorithm Theory, pp. 64–73. Lecture Notes in Computer Science, Vol. 318. Springer-Verlag, Berlin, 1988.

    Google Scholar 

  20. L. Guibas, L. Ramshaw, and J. Stolfi. A kinetic framework for computational geometry.Proc. 24th Foundations of Computer Science, pp. 100–111, Nov. 1983.

  21. L. J. Guibas and J. Stolfi. Ruler, compass, and computer: The design and analysis of geometric algorithms. Research Report 37, DEC Systems Research Center, 1989. Also appeared inTheoretical Foundations of Computer Graphics and CAD, pp. 111–165, Springer-Verlag, New York.

    Google Scholar 

  22. J. Hershberger and L. Guibas. AnO(n2) shortest path algorithm for a nonrotating convex body.Journal of Algorithms, 9:18–46, 1988.

    Google Scholar 

  23. S. Hertel and K. Mehlhorn.Fast Triangulation of Simple Polygons, pp. 207–218. Lecture Notes in Computer Science, Vol. 158. Springer-Verlag, Berlin, 1983.

    Google Scholar 

  24. K. Kedem, R. Livne, J. Pach, and M. Sharir. On the union of Jordan regions and collision-free translational motion amidst polygonal obstacles.Discrete and Computational Geometry, 1:59–71, 1986.

    Google Scholar 

  25. S. S. Keerthi and K. Sridharan. Efficient algorithms for computing two measures of depth of collision between convex polygons. Technical Report, Department of Computer Science and Automation, IIS, Banglore, 1989.

    Google Scholar 

  26. D. Kirkpatrick. Optimal search in planar subdivisions.SIAM Journal on Computing, 12:28–35, 1983.

    Google Scholar 

  27. K. Mehlhorn.Multi-dimensional Searching and Computational Geometry. EATCS Monographs on Theoretical Computer Science. Springer-Verlag, Berlin, 1984.

    Google Scholar 

  28. T. A. Ottman, P. Widmeyer, and D. Wood. A fast algorithm for Boolean mask operations. Report No. 112, Institüt für Angewandte Mathematik und Formale Beschreibungsverfahren, W-7500 Karlsruhe, 1982.

    Google Scholar 

  29. F. P. Preparata and M. I. Shamos.Computational Geometry: An Introduction. Springer-Verlag, New York, 1985.

    Google Scholar 

  30. S. Suri and J. O'Rourke. Worst-case optimal algorithms for constructing visibility polygons with holes.Proc. 2nd ACM Symposium on Computational Geometry, pp. 14–23, 1986.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Takao Asano.

The work of this author was partially supported by National Science Foundation Grant CCR90-02352.

The work of this author was partially supported by Grant A3583 from the Natural Sciences and Engineering Research Council of Canada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dobkin, D., Hershberger, J., Kirkpatrick, D. et al. Computing the intersection-depth of polyhedra. Algorithmica 9, 518–533 (1993). https://doi.org/10.1007/BF01190153

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01190153

Key words

Navigation