Abstract
We describe an implementation of a general standard basis algorithm, valid for any monomial ordering compatible with the natural semigroup structure. We concentrate on new strategies which have proved useful, in particular in the non-wellordering case. Moreover, we describe the first implementation of Schreyer's method to compute syzygies and compare it with other, more classical methods. Comparisons of the computing time of several examples in the system SINGULAR give hints as to which strategies should be used in different classes of examples.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bayer, D., Stillman, M.: Macaulay. A computer algebra system for algebraic geometry
Becker, T., Weispfenning, V.: Gröbner Bases. A computational approach to commutative algebra. Berlin, Heidelberg, New York: Springer GTM 141 (1991)
Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal. Thesis, Univ. Innsbruck, 1965
Buchberger, B.: Gröbner bases: an algorithmic method in polynomial ideal theory, In: Bose N.K. (ed) Multidimensional system theory, Riedel (1985)
Eisenbud, D.: Commutative Algebra with a view toward Algebraic Geometry. New York, Heidelberg, Berlin: Springer 1995
Grabe, H.-G.: The tangent cone algorithm and homogenization. J. Pure Appl. Alg97, 303–312 (1994)
Gebauer, R., Möller, M.: On an installation of Buchberger's Algorithm. J. Symbolic Computation6, 275–286 (1988)
Giovini, A., Mora, T., Niesi, G., Robbiano, L., Traverso, C.: “One sugar cube, please” or selection strategies in the Buchberger algorithm. Proceedings of the 1991 ISSAC, 55–63
Greuel, G.-M., Pfister, G.: Advances and improvements in the theory of standard bases and syzygies. Archiv Math63 (1995)
Lazard, D.: Gröbner bases, Gaussian elimination, and resolution of systems of algebraic equations. Proc. EUROCAL 83, LN Comp. Sci.162, 146–156
Mora, T.: An algorithm to compute the equations of tangent cones. Proc. EUROCAM 82, Berlin, Heidelberg, New York: Springer, Lecture Notes in Computer Science (1982)
Mora, T.: Seven variations on standard bases. Preprint, Univ. Genova (1988)
Möller, H. M., Mora, T.: Computational aspects of reduction strategies to construct resolutions of monomial ideals. Proc. AAECC 2, Lecture Notes in Computer Science228 (1986)
Möller. H. M., Mora, T.: New Constructive Methods in Classical Ideal Theory. J. Algebra100, 138–178 (1986)
Möller, H. M., Mora, T., Traverso, C.: Gröbner bases computation using syzygies. Proc. of ISSAC 1992
Mora, T., Pfister, G., Traverso, C.: An introduction to the tangent cone algorithm. Advances in Computing research, Issues in Robotics and nonlinear geometry6, 199–270 (1992)
Pohl, W.: About the weighted ecart and the weighted sugarMethod for computing standard bases. Preprint, Univ. Kaiserslautern, 1994
Schreyer, F.-O.: A standard basis approach to syzygies of canonical curves. J. Reine Angew. Math.421, 83–123 (1991)
Zimnol, M.: Beispiele algebraischer Reduktionsstrukturen. Diplomarbeit, Kaiserslautern (1987)
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Grassmann, H., Greuel, G.M., Martin, B. et al. On an implementation of standard bases and syzygies in SINGULAR. AAECC 7, 235–249 (1996). https://doi.org/10.1007/BF01190332
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF01190332