Skip to main content
Log in

Seven fingers allow force-torque closure grasps on any convex polyhedron

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We prove that a robot hand whose fingers make frictionless contact with a convex polyhedral object will be able to find a grasp where the hand can exert any desired force-torque on the object provided the hand has seven fingers. We present an algorithm for grasping any convex polyhedron and we prove rigorously that it works for any convex polyhedron. The algorithm requiresO(n 3/2√logn) steps (in the worst case) wheren is the number of vertices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Aggrawal. Personal Communication, 1990.

  2. K. L. Clarkson and P. W. Shor. Applications of random sampling in computational geometry.Discrete and Computational Geometry,4(5):387–422, 1989.

    Google Scholar 

  3. M. E. Dyer. Linear time algorithm for two- and three-variable linear programs.SIAM Journal on Computing,13(1):31–45, February 1984.

    Google Scholar 

  4. A. J. Goldman. Resolution and separation. InLinear Inequalities and Related Systems, pp. 41–51, ed. by Kuhn, H. W., and Tucker, A. W. Princeton University Press, Princeton, NJ, 1956.

    Google Scholar 

  5. A. J. Goldman and A. W. Tucker. Polyhedral cones. InLinear Inequalities and Related Systems, pp. 19–40, ed. by Kuhn, H. W., and Tucker, A. W. Princeton University Press, Princeton, NJ, 1956.

    Google Scholar 

  6. B. Grunbaum.Convex Polytopes. Wiley Interscience, New York, 1967.

    Google Scholar 

  7. K. Lakshminarayama. Mechanics of form closure. ASME Paper 78-DET-32, 1978.

  8. L. A. Lyusternik.Convex Figures and Polyhedra. Heath, Boston, 1966.

    Google Scholar 

  9. X. Markenscoff, L. Ni, and C. Papadimitriou. The geometry of form closure.International Journal of Robotics Research,9(1):61–74, February 1990.

    Google Scholar 

  10. N. Megiddo. Linear time algorithm for linear programming in r3 and related problems.SIAM Journal of Computing,12(4):759–776, November 1983.

    Google Scholar 

  11. B. Mishra, J. T. Schwartz, and M. Sharir. On the existence and synthesis of muitifinger positive grips.Algorithmica,2(4):541–558, November 1987.

    Google Scholar 

  12. B. Mishra and N. Silver. Some discussion of static gripping and its stability.IEEE Transactions on Systems, Man, and Cybernetics,19(4):783–796, July–August 1989.

    Google Scholar 

  13. V. -D. Nguyen. Construcing force-closure grasps.The International Journal of Robotics Research,7(3):3–16, June 1988.

    Google Scholar 

  14. F. P. Preparata and M. I. Shamos,Computational Geometry. Springer-Verlag, New York, 1985.

    Google Scholar 

  15. F. Reuleaux.Kinematics of Machinery. Dover, New York, 1875.

    Google Scholar 

  16. E. Steinitz. Bedingt konvergente reihen und konvexe systeme, i.J. Reine und Angewandte Mathematik,143:128–175, 1913.

    Google Scholar 

  17. E. Steinitz. Bedingt konvergente reihen und konvexe systeme, ii.J. Reine und Angewandte Mathematik,144:1–40, 1914.

    Google Scholar 

  18. E. Steinitz. Bedingt konvergente reihen und konvexe systeme, iii.J. Reine und Angewandte Mathematik,146:1–52, 1916.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by John E. Hopcroft.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyer, W. Seven fingers allow force-torque closure grasps on any convex polyhedron. Algorithmica 9, 278–292 (1993). https://doi.org/10.1007/BF01190900

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01190900

Key words

Navigation