Skip to main content
Log in

On integer points in polyhedra

  • Published:
Combinatorica Aims and scope Submit manuscript

Abstract

We give an upper bound on the number of vertices ofP I , the integer hull of a polyhedronP, in terms of the dimensionn of the space, the numberm of inequalities required to describeP, and the size ϕ of these inequalities. For fixedn the bound isO(m n ϕ n−). We also describe an algorithm which determines the number of integer points in a polyhedron to within a multiplicative factor of 1+ε in time polynomial inm, ϕ and 1/ε when the dimensionn is fixed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Bárány, R. Howe, andL. Lovász: On integer points in polyhedra: a lower bound, Cowles Foundation Discussion Paper No. 917, Cowles Foundation for Research in Economics, Yale University, 1989.

  2. J. W. S. Cassels:An Introduction to the Geometry of Numbers (Springer-Verlag, Berlin, 1971).

    Google Scholar 

  3. J. Cohen, andT. Hickey: Two algorithms for determining volumes of convex polyhedra,Journal of the Association for Computing Machinery,26 (1979), 401–414.

    Google Scholar 

  4. M. Dyer: On counting lattice points in polyhedra, submitted toSIAM Journal on Computing.

  5. M. Dyer, A. Frieze, andR. Kannan: A random polynomial time algorthm for approximating the volume of convex bodies, Research Report No. 88-40, Department of Mathematics, Carnegie-Mellon University, 1989.

  6. J. Edmonds, L. Lovász, andW. R. Pulleyblank: Brick decompositions and the matching rank of graphs,Combinatorica 2 (1982), 247–274.

    Google Scholar 

  7. M. R. Gary, andD. S. Johnson:Computers and Intractability, a Guide to the Theory of NP-completeness (W. H. Freeman and Co., San Francisco, 1979).

    Google Scholar 

  8. M. Grötschel, L. Lovász, andA. Schrijver:Geometric Algorithms and Combinatorial Optimization, Springer-Verlag, Heidelberg, 1988.

    Google Scholar 

  9. P. M. Gruber, andC. G. Lekkerkerker:Geometry of Numbers, (Second edition) North Holland, Amsterdam, 1987.

    Google Scholar 

  10. M. Hartmann: Cutting planes and the complexity of the integer hull, Technical Report No. 819, School of Operations Research and Industrial Engineering, Cornell University, 1989.

  11. A. C. Hayes, andD. G. Larman: The vertices of the knapsack polytope,Discrete Applied Math. 6 (1983), 135–138.

    Google Scholar 

  12. R. Kannan: Minkowski's convex body theorem and integer programming,Math. of Operations Research 12 (1987), 415–440.

    Google Scholar 

  13. C. G. Lekkerkerker:Geometry of Numbers, North Holland, Amsterdam, 1969.

    Google Scholar 

  14. H. W. Lenstra, Jr.: Integer Programming in a fixed number of variables,Math. of Operations Research 8 (1983) 538–548.

    Google Scholar 

  15. L. Lovász: communicated by H.E. Scarf.

  16. P. McMullen, andG. C. Shephard:Convex Polytopes and the Upper Bound Conjecture, Cambridge University Press, Cambridge, 1971.

    Google Scholar 

  17. D. Morgan: The set of vertices of the convex hull of integer points in regions defined by particular linear inequalities, submitted toMathematika.

  18. D. S. Rubin: On the unlimited number of faces in integer hulls of linear programs with a single constraint,Operations Research,18 (1970), 940–946.

    Google Scholar 

  19. A. Schrijver:Theory of Linear and Integer Programming, Wiley, Chichester, 1986.

    Google Scholar 

  20. V. N. Shevchenko: On the number of extreme points in integer programming,Kibernetika (1981) No. 2, 133–134.

    Google Scholar 

  21. L. G. Valiant: The complexity of enumeration and reliability problems,SIAM Journal on Computing 8 (1979) 410–421.

    Google Scholar 

  22. L. Zamansky, andV. Cherkassky: Determination of the number of integer points in polyhedra inR 3: polynomial algorithms,Doklady Akad. Nauk. Ukrain. USSR Ser. A (1983) No. 4, 13–15.

    Google Scholar 

  23. L. Zamansky, andV. Cherkassky: The formula for finding the number of integer points under a line and its application,Ekonomika i Mat. Metody 20 (1984) No. 6, 1132–1138.

    Google Scholar 

  24. L. Zamansky, andV. Cherkassky:Effective algorithms for the solution of discrete optimization problems, Kiev: Znanie, 1984.

    Google Scholar 

  25. L. Zamansky, andV. Cherkassky: Generalization of the Jacobi-Perron algorithm for determining the number of integer points in polyhedra,Doklady Akad. Nauk. Ukrain. USSR Ser. A (1985) No. 10, 11–13.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by Sonderfschungsbereich 303 (DFG) and NSF grant ECS-8611841.

Partially supported by NSF grant DMS-8905645.

Supported by NSF grants ECS-8418392 and CCR-8805199.

mcd%vax.oxford.ac.uk

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cook, W., Hartmann, M., Kannan, R. et al. On integer points in polyhedra. Combinatorica 12, 27–37 (1992). https://doi.org/10.1007/BF01191202

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01191202

AMS subject classification code (1991)

Navigation