Abstract
We give an upper bound on the number of vertices ofP I , the integer hull of a polyhedronP, in terms of the dimensionn of the space, the numberm of inequalities required to describeP, and the size ϕ of these inequalities. For fixedn the bound isO(m n ϕ n−). We also describe an algorithm which determines the number of integer points in a polyhedron to within a multiplicative factor of 1+ε in time polynomial inm, ϕ and 1/ε when the dimensionn is fixed.
Similar content being viewed by others
References
I. Bárány, R. Howe, andL. Lovász: On integer points in polyhedra: a lower bound, Cowles Foundation Discussion Paper No. 917, Cowles Foundation for Research in Economics, Yale University, 1989.
J. W. S. Cassels:An Introduction to the Geometry of Numbers (Springer-Verlag, Berlin, 1971).
J. Cohen, andT. Hickey: Two algorithms for determining volumes of convex polyhedra,Journal of the Association for Computing Machinery,26 (1979), 401–414.
M. Dyer: On counting lattice points in polyhedra, submitted toSIAM Journal on Computing.
M. Dyer, A. Frieze, andR. Kannan: A random polynomial time algorthm for approximating the volume of convex bodies, Research Report No. 88-40, Department of Mathematics, Carnegie-Mellon University, 1989.
J. Edmonds, L. Lovász, andW. R. Pulleyblank: Brick decompositions and the matching rank of graphs,Combinatorica 2 (1982), 247–274.
M. R. Gary, andD. S. Johnson:Computers and Intractability, a Guide to the Theory of NP-completeness (W. H. Freeman and Co., San Francisco, 1979).
M. Grötschel, L. Lovász, andA. Schrijver:Geometric Algorithms and Combinatorial Optimization, Springer-Verlag, Heidelberg, 1988.
P. M. Gruber, andC. G. Lekkerkerker:Geometry of Numbers, (Second edition) North Holland, Amsterdam, 1987.
M. Hartmann: Cutting planes and the complexity of the integer hull, Technical Report No. 819, School of Operations Research and Industrial Engineering, Cornell University, 1989.
A. C. Hayes, andD. G. Larman: The vertices of the knapsack polytope,Discrete Applied Math. 6 (1983), 135–138.
R. Kannan: Minkowski's convex body theorem and integer programming,Math. of Operations Research 12 (1987), 415–440.
C. G. Lekkerkerker:Geometry of Numbers, North Holland, Amsterdam, 1969.
H. W. Lenstra, Jr.: Integer Programming in a fixed number of variables,Math. of Operations Research 8 (1983) 538–548.
L. Lovász: communicated by H.E. Scarf.
P. McMullen, andG. C. Shephard:Convex Polytopes and the Upper Bound Conjecture, Cambridge University Press, Cambridge, 1971.
D. Morgan: The set of vertices of the convex hull of integer points in regions defined by particular linear inequalities, submitted toMathematika.
D. S. Rubin: On the unlimited number of faces in integer hulls of linear programs with a single constraint,Operations Research,18 (1970), 940–946.
A. Schrijver:Theory of Linear and Integer Programming, Wiley, Chichester, 1986.
V. N. Shevchenko: On the number of extreme points in integer programming,Kibernetika (1981) No. 2, 133–134.
L. G. Valiant: The complexity of enumeration and reliability problems,SIAM Journal on Computing 8 (1979) 410–421.
L. Zamansky, andV. Cherkassky: Determination of the number of integer points in polyhedra inR 3: polynomial algorithms,Doklady Akad. Nauk. Ukrain. USSR Ser. A (1983) No. 4, 13–15.
L. Zamansky, andV. Cherkassky: The formula for finding the number of integer points under a line and its application,Ekonomika i Mat. Metody 20 (1984) No. 6, 1132–1138.
L. Zamansky, andV. Cherkassky:Effective algorithms for the solution of discrete optimization problems, Kiev: Znanie, 1984.
L. Zamansky, andV. Cherkassky: Generalization of the Jacobi-Perron algorithm for determining the number of integer points in polyhedra,Doklady Akad. Nauk. Ukrain. USSR Ser. A (1985) No. 10, 11–13.
Author information
Authors and Affiliations
Additional information
Supported by Sonderfschungsbereich 303 (DFG) and NSF grant ECS-8611841.
Partially supported by NSF grant DMS-8905645.
Supported by NSF grants ECS-8418392 and CCR-8805199.
mcd%vax.oxford.ac.uk