Skip to main content
Log in

An optimal parallel algorithm for planar cycle separators

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We present an optimal parallel algorithm for computing a cycle separator of ann-vertex embedded planar undirected graph inO(logn) time onn/logn processors. As a consequence, we also obtain an improved parallel algorithm for constructing a depth-first search tree rooted at any given vertex in a connected planar undirected graph in O(log2 n) time on n/logn processors. The best previous algorithms for computing depth-first search trees and cycle separators achieved the same time complexities, but withn processors. Our algorithms run on a parallel random access machine that permits concurrent reads and concurrent writes in its shared memory and allows an arbitrary processor to succeed in case of a write conflict.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Abrahamson, N. Dadoun, D. G. Kirkpatrick, and T. Przytycka, A simple tree contraction algorithm,Journal of Algorithms, 10:287–302, 1989.

    Google Scholar 

  2. A. Aggarwal and R. J. Anderson, A random NC algorithm for depth-first seach,Combinatorica, 8:1–12, 1988.

    Google Scholar 

  3. A. Aggarwal, R. J. Anderson, and M. Y. Kao, Parallel depth-first search in general directed graphs,SIAM Journal on Computing, 19:397–409, 1990.

    Google Scholar 

  4. A. V. Aho, J. E. Hopcroft, and J. D. Ullman,The Design and Analysis of Computer Algorithms, Addison-Wesley, Reading, MA, 1974.

    Google Scholar 

  5. R. J. Anderson and G. L. Miller, Deterministic parallel list ranking,Algorithmica, 6:859–868, 1991.

    Google Scholar 

  6. M. Atallah and U. Vishkin, Finding Euler tours in parallel,Journal of Computer and System Sciences, 29:330–337, 1984.

    Google Scholar 

  7. C. Berge,Graphs, second revised edition, North-Holland, New York, 1985.

    Google Scholar 

  8. B. Bollobás,Graph Theory, Springer-Verlag, New York, 1979.

    Google Scholar 

  9. R. Cole and U. Vishkin, The accelerated centroid decomposition technique for optimal tree evaluation in logarithmic time,Algorithmica, 3:l329–346, 1988.

    Google Scholar 

  10. R. Cole and U. Vishkin, Faster optimal prefix sums and list ranking,Information and Computation, 81:334–352, 1989.

    Google Scholar 

  11. T. H. Cormen, C. L. Leiserson, and R. L. Rivest,Introduction to Algorithms, MIT Press, Cambridge, MA, 1991.

    Google Scholar 

  12. J. Edmonds, A combinatorial representation for polyhedral surfaces,American Mathematical Society Notices, 7:646, 1960.

    Google Scholar 

  13. H. Gazit, G. L. Miller, and S. H. Teng, Optimal tree contraction in the EREW model. In S. K. Tewksbury and B. W. Dickinson and S. C. Schwartz, editors,Concurrent Computations: Algorithms, Architecture, and Technology, Plenum, New York, 1988, pp. 139–156.

    Google Scholar 

  14. A. M. Gibbons and W. Rytter, An optimal parallel algorithm for dynamic expression evaluation and its applications,Information and Computation, 81:32–45, 1989.

    Google Scholar 

  15. T. Hagerup, Optimal parallel algorithms on planar graphs,Information and Computation, 84:71–96, 1990.

    Google Scholar 

  16. T. Hagerup, Planar depth-first search in O(logn) parallel time,SIAM Journal on Computing, 19:678–704, 1990.

    Google Scholar 

  17. Y. Han, An optimal linked list prefix algorithm on a local memory computer,IEEE Transactions on Computers, 40:1149–1153, 1991.

    Google Scholar 

  18. F. Harary,Graph Theory, Addison-Wesley, Reading, MA, 1969.

    Google Scholar 

  19. X. He, Efficient parallel algorithms for series parallel graphs,Journal of Algorithms, 12:409–430, 1991.

    Google Scholar 

  20. X. He and Y. Yesha, A nearly optimal parallel algorithm for constructing depth first spanning trees in planar graphs,SIAM Journal on Computing, 17:486–491, 1988.

    Google Scholar 

  21. J. Ja'Ja and S. Kosaraju, Parallel algorithms for planar graphs and related problems,IEEE Transactions on Circuits and Systems, 35:304–311, 1988.

    Google Scholar 

  22. M. Y. Kao, All graphs have cycle separators and planar directed depth-first search is in DNC. In J. H. Reif, editor, Lecture Notes in Computer Science, volume 319.VLSI Algorithms and Architectures, the 3rd Aegean Workshop on Computing, Springer-Verlag, New York, 1988, pp. 53–63.

    Google Scholar 

  23. M. Y. Kao, Planar strong connectivity helps in parallel depth-first search,SIAM Journal on Computing, 24:46–62, 1995.

    Google Scholar 

  24. M. Y. Kao and P. N. Klein, Towards overcoming the transitive-closure bottleneck: efficient parallel algorithms for planar digraphs,Journal of Computer and System Sciences, 47:459–500, 1993.

    Google Scholar 

  25. R. Karp and V. Ramachandran, A survey of parallel algorithms for shared-memory machines. In J. van Leeuwen, editor,Handbook of Theoretical Computer Science: Algorithms and Complexity, volume A, Elsevier, New York, 1990, pp. 869–941.

    Google Scholar 

  26. P. N. Klein, Efficient parallel algorithms for chordal graphs,Proceedings of the 29th Annual IEEE Symposium on Foundations of Computer Science, 1988, pp. 150–161.

  27. S. R. Kosaraju and A. L. Delcher, Optimal parallel evaluation of tree-structured computations by raking. In J. H. Reif, editor,VLSI Algorithms and Architectures, the 3rd Aegean Workshop on Computing, Lecture Notes in Computer Science, volume 319, Springer-Verlag, New York, 1988, pp. 101–110.

    Google Scholar 

  28. C. P. Kruskal, L. Rudolph, and M. Snir, The power of parallel prefix,IEEE Transactions on Computers, 34:965–968, 1985.

    Google Scholar 

  29. R. E. Ladner and M. J. Fischer, Parallel prefix computation,Journal of the ACM, 27:831–838, 1980.

    Google Scholar 

  30. G. L. Miller, Finding small simple cycle separators for 2-connected planar graphs,Journal of Computer and System Sciences, 32:265–279, 1986.

    Google Scholar 

  31. G. L. Miller and J. H. Reif, Parallel tree contraction, part 1: Fundamentals. In S. Micali, editor,Advances in Computing Research: Randomness and Computation, volume 5, JAI Press, Greenwich, CT, 1989, pp. 47–72.

    Google Scholar 

  32. G. L. Miller and J. H. Reif, Parallel tree contraction, part 2: Further applications,SIAM Journal on Computing, 20:1128–1147, 1991.

    Google Scholar 

  33. V. Ramachandran and J. H. Reif, An optimal parallel algorithm for graph planarity,Proceedings of the 30th Annual IEEE Symposium on Foundations of Computer Science, 1989, pp. 282–287.

  34. J. H. Reif, Depth-first search is inherently sequential,Information Processing Letters, 20:229–234, 1985.

    Google Scholar 

  35. G. E. Shannon, A linear-processor algorithm for depth-first search in planar graphs,Information Processing Letters, 29:119–123, 1988.

    Google Scholar 

  36. J. R. Smith, Parallel algorithms for depth-first search, I. Planar graphs,SIAM Journal on Computing, 15:814–830, 1986.

    Google Scholar 

  37. R. E. Tarjan, Depth-first search and linear graph algorithms,SIAM Journal on Computing, 1:146–160, 1972.

    Google Scholar 

  38. W. Tutte,Graph Theory, Encyclopedia of Mathematics and Its Applications, volume 21, Addison-Wesley, Reading, MA, 1984.

    Google Scholar 

  39. A. T. White,Graphs, Groups, and Surfaces, North-Holland, New York, 1973.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by D. T. Lee.

A preliminary version of this paper appeared as “Improved Parallel Depth-First Search in Undirected Planar Graphs” in theProceedings of the Third Workshop on Algorithms and Data Structures, 1993, pp. 407–420.

Supported in part by NSF Grant CCR-9101385.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kao, MY., Teng, SH. & Toyama, K. An optimal parallel algorithm for planar cycle separators. Algorithmica 14, 398–408 (1995). https://doi.org/10.1007/BF01192047

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01192047

Key words

Navigation