Abstract
LetC be an extended cyclic code of lengthp m over\(\mathbb{F}_p \). The border ofC is the set of minimal elements (according to a partial order on [0,p m−1]) of the complement of the defining-set ofC. We show that an affine-invariant code whose border consists of only one cyclotomic coset is the dual of an extended BCH code if, and only if, this border is the cyclotomic coset, sayF(t, i), ofp t −1−i, with 1 ≦t ≦ m and 0 ≦i < p−1. We then study such privileged codes. We first make precize which duals of extendedBCH codes they are. Next, we show that Weil's bound in this context gives an explicit formula; that is, the couple (t, i) fully determines the value of the Weil bound for the code with borderF(t, i). In the case where this value is negative, we use the Roos method to bound the minimum distance, greatly improving the BCH bound.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Charpin, P.: Codes cycliques étendus affine-invariants et antichaines d'un ensemble partiellement ordonné. Discrete Math.80, 229–247 (1990)
Charpin, P.: Some applications of a classification of affine-invariant codes. Lect. Notes in Comp. Sci. 356, Proceedings of AAECC5, 1987
Charpin, P.: On a class of primitive BCH codes. IEEE Trans on Info. Theory, Vol. IT36, 223–229, January 1990
Hartmann, C. R. P., Tzeng, K. K.: Generalizations of the BCH bound. Info. Control20, 489–498 (1972)
Kasami, T., Lin, S., Peterson, W. W.: Some results on cyclic codes which are invariant under the affine group and their applications. Info. Control Vol.11, 475–496 (1967)
Kasami, T., Tokura, N.: On the weight structure of Reed Muller codes. IEEE Trans. Info. Theory, Vol. IT16(6), 752–759 (1970)
Levenstein, V.: Bounds on the maximal cardinality of a code with bounded modules of the inner product. Soviet Math. Dokl.25(2), 526–531 (1982)
Levy-dit-Vehel, F.: On duals of binary primitive BCH codes. INRIA Report no 1835
Mann, H. B.: On the number of information symbols in Bose-Chauduri codes. Info. Control5, 153–162 (1962)
Massey, J. L., Schaub, T.: Linear complexity in coding theory. Coding theory and Applications. Lecture Notes in Computer Science Vol. 331. Berlin, Heidelberg, New York: Springer 1988
Massey, J. L., Schaub, T.: Bounds on the minimum distance of cyclic codes via bounds on the linear complexity of sequences. Laboratory report
McEliece, R. J.: Weight congruences forp-ary cyclic codes. Discrete Math.3, 117–192 (1972)
Moreno, O., Moreno, C. J.: The Mac Williams-Sloane conjecture on the tightness of the Carlitz-Uchiyama Bound and the weights of duals of BCH codes. Preprint
Rodier, F.: Sur la distance minimale du dual d'un Code BCH. To be published in Discrete Mathematics
Roos, C.: A new lower bound for the minimum distance of a cyclic code. IEEE Trans. Info. Theory,IT 29(3), May (1983)
Mc Williams, F. J., Sloane, N. J. A.: The theory of error correcting codes. North Holland (1977)
Ward, H. N.: Divisible codes. Archiv der Mathematik, Vol.36, fasc. 6, 485–494 (1981)
Wolfmann, J.: New bounds on cyclic codes from algebraic curves. Lecture Notes in Computer Science,388, 47–62 (1989)
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Levy-dit-Vehel, F. Bounds on the minimum distance of the duals of extended BCH codes over\(\mathbb{F}_p \) . AAECC 6, 175–190 (1995). https://doi.org/10.1007/BF01195336
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF01195336