Abstract
We extend a result of Gianni and Kalkbrener concerning the stability of the Gröbner basis property under specializations. In particular, we prove that the Gröbner basis property is preserved if one specializes variables from bottom up in a Gröbner basis of a zero-dimensional radical ideal w.r.t. a lexicographical term order. The proof makes use of a connection between Gröbner bases and D-Gröbner bases which is proved separately. Computational aspects of this connection are discussed briefly.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Adams, W. W., Boyle, A., Loustaunau, P.: Transitivity for weak and strong Gröbner bases. J. Symb. Comp.15/1, 49–65 (1993)
Becker, T., Weispfenning, V., Kredel, H.: Gröbner Bases. A Computational Approach to Commutative Algebra. Graduate Texts in Mathematics. Berlin Heidelberg New York: Springer 1993
Buchberger, B.: Ein algorithmisches Kriterium für die Lösbarkeit eines algebraischen Glei-chungssystems. Aequ. Math.4/3, 374–383 (1970).
Gianni, P.: Properties of Gröbner bases under specializations. In: Davenport, J. H. (ed.) EUROCAL ′87, European Conference on Computer Algebra. Lecture Notes in Computer Science vol. 378, 293–297. Berlin Heidelberg New York: Springer 1987
Gianni, P., Trager, B., Zacharias, G.: Gröbner bases and primary decomposition of polynomial ideals. J. Symb. Comp.6/2, 3, 149–167 (1988)
Kalkbrener, M.: Solving systems of algebraic equations by using Gröbner bases. In: Davenport, J. H. (ed.) EUROCAL ′87, European Conference on Computer Algebra. Lecture Notes in Computer Science vol. 378, 282–292. Berlin Heidelberg New York: Springer 1987
Kandri-Rody, A., Kapur, D.: Algorithms for computing Gröbner bases of polynomial ideals over various Euclidean rings. In: Fitch, J. (ed.) EUROSAM ′84, International Symposium on Symbolic and Algebraic Computation. Lecture Notes in Mathematics, vol. 174, 195–206. Berlin Heidelberg New York: Springer 1984
Kandri-Rody, A., Kapur, D.: Computing a Gröbner basis of a polynomial ideal over a Euclidean domain. J. Symb. Comp.6/1, 37–57 (1988)
Lauer, M.: Canonical representatives for the residue classes of a polynomial ideal. In: Jenks, R. D. (ed.) 1976 ACM Symposium on Symbolic and Algebraic Computation, pp. 339–345. New York: ACM Press 1976
Mark, W.: Gröbnerbasen über Hauptidealringen und euklidischen Ringen. Diploma thesis, Universität plPassau (1992)
Möller, H. M.: On the construction of Gröbner bases using syzygies. J. Symb. Comp.6/2, 3, 345–359 (1988)
Pan, L.: On the D-bases of polynomial ideals over principal ideal domains. J. Symb. Comp.7/1, 55–69 (1989)
Seidenberg, A.: Constructions in algebra. Trans. Am. Math. Soc.197, 272–313 (1974)
Szekeres, G.: A canonical basis for the ideals of a polynomial domain. Am. Math. Mon.59/6, 379–386 (1952)
Weispfenning, V.: Comprehensive Gröbner bases. J. Symb. Comp.14/1, 1–29 (1992)
Zacharias, G.: Generalized Gröbner Bases in Commutative Polynomial Rings. Bachelor Thesis, Lab. for Computer Science, MIT (1978)
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Becker, T. On Gröbner bases under specialization. AAECC 5, 1–8 (1994). https://doi.org/10.1007/BF01196621
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF01196621