Abstract
This paper describes three methods to calculate the number of types of crystallographic Point Symmetry Operations (crPSOs for short) in a space of any finite dimension. We begin our presentation by recalling some properties of Point Operations:
-
•crystallographic restrictions,
-
•relation between the number of types of positive (crPSO+) and negative (crPSO−) crystallographic Point Symmetry Operations in spaces of odd dimension,
-
•definition of transitive and non-transitive Point Operations.
In Part One, we summarize the Hermann method whereupon this technique is used to calculate the number of types of crPSOs for ann-dimensional space up ton=16. Then, in Part Two, we develop a new method using the Euler indicatrix and the pseudo-Cartesian product of several sets. This method furnishes a formula for determining the number of crPSOs in spaces of arbitrary finite dimension; this number was calculated by computer for spaces having up to 70 dimensions. Finally, in Part Three, we elaborate another novel method based on the following properties of the characteristic equation of a crPSO: its entries are integers and its determinant is +1 (for a crPSO+). Such a method provides the solution for any characteristic equation. The main concepts from crystallography which we employ in our study are explained in the Appendix.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Hermann C.: Kristallographie in Räumen betlieger Dimensionszahl. Acta. Cryst.2, 139–145 (1949)
Bertaut E. F.: L'indicateur d'Euler et les opérations de symétrie cristallographiques transitives dans les hyperespacesE n. G R. Acad. Sci. ParisT307, série II, 1141–1146 (1988)
Bertaut E. F.: Vecteurs et valeurs propres des opérateurs de symétries transitives dans les espacesE n. C R. Acad. Sci. ParisT308, série II, 363–368 (1989)
Veysseyre H., Veysseyre R., Weigel D.: Nombre de types d'Opérations Ponctuelles de Symétrie Cristallographiques dans l'espace En. G R. Acad. Sci. ParisT310, série II, 1031–1036 (1990)
Weigel D., Veysseyre R., Phan T., Effantin J. M., Billet Y.: Crystallography, Geometry and Physics in Higher Dimensions. I. Point Symmetry Operations. Acta. Cryst.A40, 323–330 (1984)
Veysseyre R.: Généralisation de la Cristallographie géométrique dans les Espaces Euclidiens án dimensions. These de Doctorat d'Etat, Université de PARIS-VI, Mai 1987
Weigel D., Phan T., Veysseyre R.: Crystallography, Geometry and Physics in Higher Dimensions. IV. Geometrical Symbols for the 227 Crystallographic Point Groups in Four-Dimensional Space. Acta. Cryst.A43, 294–307 (1987)
Weigel D., Phan T., Veysseyre R.: Sur les symboles géométriques des groupes ponctuels cristallographiques de l'espace Euclidien á 4 dimensions. C. R. Acad. Sci. Paris,T298, série II, (19), 825–828 (1984)
Phan T.: Cristallographie géométrique á 4 et 5 dimensions. Applications Physiques. These de Doctorat d'Etat, Université de PARIS-VI, October 1989
Veysseyre H., Veysseyre R., Mekhilef M.: Méthode interactive de localisation des zéros des polynômes et des valeurs propres des matrices. Mecanique-Materiaux-Electricite, No. 434, pp. 3–5 (1990)
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Veysseyre, R., Veysseyre, H. & Weigel, D. Counting, types and symbols of crystallographic Point Symmetry Operations of space En . AAECC 5, 53–70 (1994). https://doi.org/10.1007/BF01196625
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF01196625