Skip to main content

Counting, types and symbols of crystallographic Point Symmetry Operations of space En

  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract

This paper describes three methods to calculate the number of types of crystallographic Point Symmetry Operations (crPSOs for short) in a space of any finite dimension. We begin our presentation by recalling some properties of Point Operations:

  • •crystallographic restrictions,

  • •relation between the number of types of positive (crPSO+) and negative (crPSO) crystallographic Point Symmetry Operations in spaces of odd dimension,

  • •definition of transitive and non-transitive Point Operations.

In Part One, we summarize the Hermann method whereupon this technique is used to calculate the number of types of crPSOs for ann-dimensional space up ton=16. Then, in Part Two, we develop a new method using the Euler indicatrix and the pseudo-Cartesian product of several sets. This method furnishes a formula for determining the number of crPSOs in spaces of arbitrary finite dimension; this number was calculated by computer for spaces having up to 70 dimensions. Finally, in Part Three, we elaborate another novel method based on the following properties of the characteristic equation of a crPSO: its entries are integers and its determinant is +1 (for a crPSO+). Such a method provides the solution for any characteristic equation. The main concepts from crystallography which we employ in our study are explained in the Appendix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Hermann C.: Kristallographie in Räumen betlieger Dimensionszahl. Acta. Cryst.2, 139–145 (1949)

    Google Scholar 

  2. Bertaut E. F.: L'indicateur d'Euler et les opérations de symétrie cristallographiques transitives dans les hyperespacesE n. G R. Acad. Sci. ParisT307, série II, 1141–1146 (1988)

    Google Scholar 

  3. Bertaut E. F.: Vecteurs et valeurs propres des opérateurs de symétries transitives dans les espacesE n. C R. Acad. Sci. ParisT308, série II, 363–368 (1989)

    Google Scholar 

  4. Veysseyre H., Veysseyre R., Weigel D.: Nombre de types d'Opérations Ponctuelles de Symétrie Cristallographiques dans l'espace En. G R. Acad. Sci. ParisT310, série II, 1031–1036 (1990)

    Google Scholar 

  5. Weigel D., Veysseyre R., Phan T., Effantin J. M., Billet Y.: Crystallography, Geometry and Physics in Higher Dimensions. I. Point Symmetry Operations. Acta. Cryst.A40, 323–330 (1984)

    Google Scholar 

  6. Veysseyre R.: Généralisation de la Cristallographie géométrique dans les Espaces Euclidiens án dimensions. These de Doctorat d'Etat, Université de PARIS-VI, Mai 1987

  7. Weigel D., Phan T., Veysseyre R.: Crystallography, Geometry and Physics in Higher Dimensions. IV. Geometrical Symbols for the 227 Crystallographic Point Groups in Four-Dimensional Space. Acta. Cryst.A43, 294–307 (1987)

    Google Scholar 

  8. Weigel D., Phan T., Veysseyre R.: Sur les symboles géométriques des groupes ponctuels cristallographiques de l'espace Euclidien á 4 dimensions. C. R. Acad. Sci. Paris,T298, série II, (19), 825–828 (1984)

    Google Scholar 

  9. Phan T.: Cristallographie géométrique á 4 et 5 dimensions. Applications Physiques. These de Doctorat d'Etat, Université de PARIS-VI, October 1989

  10. Veysseyre H., Veysseyre R., Mekhilef M.: Méthode interactive de localisation des zéros des polynômes et des valeurs propres des matrices. Mecanique-Materiaux-Electricite, No. 434, pp. 3–5 (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Veysseyre, R., Veysseyre, H. & Weigel, D. Counting, types and symbols of crystallographic Point Symmetry Operations of space En . AAECC 5, 53–70 (1994). https://doi.org/10.1007/BF01196625

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01196625

Keywords