Abstract
Complex parametric curves have been subject of a symbolic algorithm approach in recent years. In this paper we analyze the theoretical applicability of some of these algorithms to the real parametric curve case. In particular, we show how several results are valid both over the real and the complex numbers, as they hold equivalently over a real curve and its complexification. Therefore, the standard algorithms for the complex case can be applied to obtain real answers in the real case. A second issue in our paper is the study of the very different behaviour of the real parametric mapping and we characterize here the properties of being (almost) injective or surjective.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Abhyankar, S., Bajaj, C.: Automatic parametrization of rational curves and surfaces III: algebraic plane curves. Computer Aided Geometric Design 5-4, 309–323 (1988)
Abhyankar, S., Bajaj, C.: Computation with algebraic curves. Proc. ISSAC 88. Lecture Notes in Computer Science, Vol.358, pp. 279–284, Berlin, Heidelberg, New York: Springer 1989
Abhyankar, S.: Algebraic Geometry for scientists and engineers. Math Surveys Monographs35. A.M.S. 1990
Becker, E., Neuhaus, R.: Computation of the real radical of an ideal. In: Eyssette, F., Galligo, A. (eds) Proceedings Mega 92, Computational Algebraic Geometry. Progress in Mathematics, pp. 1–20. Boston-Basel-Berlin: Birkläuser 1993
Bochnak, J., Coste, M., Roy, M.F.: Géométrie Algébrique Réelle. Berlin, Heidelberg, New York: Springer 1987
Chevalley, C.: Introduction to the theory of algebraic functions of one variable. Mathematical Surveys, VI, A.M.S. 1951
Coste, M., Roy, M.F.: Thorn's lemma, the coding of real algebraic numbers and the topology of semi-algebraic sets. J. Symbolic Computat5, 121–129 (1988)
Cox, D., Little, J., O'Shea, D.: Ideals, varieties and algorithms. Berlin, Heidelberg, New York: UTM-Springer 1992
Cucker, F., Pardo, L. M., Raimondo, M., Recio, T., Roy, M. F.: On local and global analytic branches of a real algebraic curve. Lecture Notes in Computer Science, Vol. 356, 161–182, Berlin, Heidelberg, New York: Springer 1989
Dubois, D. W., Efroymson, G.: Algebraic theory of real varieties 1. Studies and essays presented to Y. H. Chen for his 60th birthday, pp. 107–135. Taipei: Math. Res. Center Nat. Taiwan Univ. 1970
Gao, X.-S., Chou, S. Ch., Li, Z. M.: Computation with rational parametric equations. MM. Researchs Preprints.6, 56–78 (1991)
Gao, X.-S.: On the theory of resolvents and its applications. MM. Researchs Preprints.6, 79–93 (1991)
Gianni, P., Trager, B., Zacharias, G.: Groebner basis and primary decomposition of polynomial ideals. Computational aspects on Commutative Algebra. Special issue of the Journal of Symbolic Computation6(2–3), 149–168 (1988)
Giusti, M.: Combinatorial dimension theory of algebraic varieties. Computational aspects on Commutative Algebra. Special issue of the Journal of Symbolic Computation6(2–3), 249–265 (1988)
González, L., Lombardi, H., Recio, T., Roy, M.F.: Sous résultants et spécialisation de la suite de Sturm I." Informatique Theorique et Applications.24, 561–588 (1990)
Gutierrez, J., Recio, T.: Rational function decomposition and Groebner basis in the parametrization of a plane curve. Lecture Notes in Computer Science, Vol.583, pp. 231–246, Berlin, Heidelberg, New York: Springer 1992
Heintz, J., Recio, T., Roy, M.F.: Algorithms in Real Algebraic Geometry and applications to Computational Geometry. DIMACS, Series in Discrete Mathematics and Theoretical Computer Science,6, 137–163, 1991
Kalkbrener, M.: Three contributions to elimination theory. Ph.D. thesis, Institut fur Mathematik, University of Linz, Austria 1991
Kredel, H., Weispfenning, V.: Computing dimension and independent sets for polynomial ideals. Computational aspects on Commutative Algebra. Special issue of the Journal of Symbolic Computation6(2–3), 213–248 (1988)
Manocha, D., Canny, J.: Rational curves with polynomial parametrization. Computer-Aided Design.23(9), 12–19 (1991)
Ollivier, F.: Inversibility of rational mappings and structural identifiability in Automatics. Proc. ISSAC 89. Portland, pp. 43–53 A.C.M. Press, 1989
Schinzel, A.: Selected topics on polynomials. Ann Arbor, University of Michigan Press, 1982
Sederberg, T. W.: Improperly parametrized rational curves. Computer Aided Geometric Design3, 67–75 (1986)
Sendra, J. R., Winkler, F.: Symbolic parametrization of curves. Journal of Symbolic Computation12(6), 607–631 (1991)
Author information
Authors and Affiliations
Additional information
Partially supported by CICyT-TIC-1026-CE, 92/0498/C02/01 (Geometría Real y Algoritmos) and Esprit-Bra-POSSO 6846
Rights and permissions
About this article
Cite this article
Alonso, C., Gutierrez, J. & Recio, T. Reconsidering algorithms for real parametric curves. AAECC 6, 345–352 (1995). https://doi.org/10.1007/BF01198014
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF01198014