Skip to main content
Log in

Bounds for traces in complete intersections and degrees in the Nullstellensatz

  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract

In this paper we obtain an effective Nullstellensatz using quantitative considerations of the classical duality theory in complete intersections. Letk be an infinite perfect field and let f1,...,f n−r∈k[X1,...,Xn] be a regular sequence with d:=maxj deg fj. Denote byA the polynomial ringk [X1,..., Xr] and byB the factor ring k[X1,...,Xn]/(f1,...,fn r); assume that the canonical morphism A→B is injective and integral and that the Jacobian determinantΔ with respect to the variables Xr+1,...,Xn is not a zero divisor inB. Let finally σ∈B*:=HomA(B, A) be the generator of B* associated to the regular sequence.

We show that for each polynomialf the inequality deg σ(¯f) ≦dn r(δ+1) holds (¯fdenotes the class off inB andδ is an upper bound for (n−r)d and degf). For the usual trace associated to the (free) extensionAB we obtain a somewhat more precise bound: deg Tr(¯f) ≦ dn r degf. From these bounds and Bertini's theorem we deduce an elementary proof of the following effective Nullstellensatz: let f1,..., fs be polynomials in k[X1,...,Xn] with degrees bounded by a constant d≧2; then 1 ∈(f1,..., fs) if and only if there exist polynomials p1,..., ps∈k[X1,..., Xn] with degrees bounded by 4n(d+ 1)n such that 1=Σipifi. in the particular cases when the characteristic of the base fieldk is zero ord=2 the sharper bound 4ndn is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Becker, E., Wörman, T.: On the trace formula for quadratic forms and some applications. To appear in Proc. RASQUAD, Berkeley

  2. Berenstein, C., Struppa, D.: Recent improvements in the Complexity of the Effective Nullstellensatz. Linear Algebra Its Appl.157, 203–215 (1991)

    Google Scholar 

  3. Berenstein, C., Yger, A.: Bounds for the degrees in the division problem. Mich. Math. J.37, 25–43 (1990)

    Google Scholar 

  4. Brownawell, D.: Bounds for the degrees in the Nullstellensatz. Ann. Math. Second Series126(3), 577–591 (1987)

    Google Scholar 

  5. Caniglia, L., Galligo, A., Heintz, J.: Some new effectivity bounds in computational geometry. Proc. 6th Int. Conf. Applied Algebra, Algebraic Algorithms and Error Correcting Codes AAECC-6, Roma 1988, Lecture Notes in Computer Sciences. Berlin, Hiedelberg, New York: Springer vol.357, 131–151 (1989)

    Google Scholar 

  6. Cardinal, J.-P.: Dualité et algorithmes itératifs pour la résolution de systèmes polynomiaux. Thesis Université de Rennes (1993)

  7. Dickenstein, A., Giusti, M., Fitchas, N., Sessa, C.: The membership problem for unmixed polynomial ideals is solvable in single exponential time. Discrete Appl. Math.33, 73–94 (1991)

    Google Scholar 

  8. Dickenstein, A., Sessa, C.: An effective residual criterion for the membership problem in ℂ[z1,..., zn]. J. Pure Appl. Algebra74, 149–158 (1991)

    Google Scholar 

  9. Dubé, T.: A Combinatorial Proof of the Effective Nullstellensatz. J. Symb. Comp.15, 277–296 (1993)

    Google Scholar 

  10. Fitchas, N., Galligo, A.: Nullstellensatz effectif et conjecture de Serre (théorème de Quillen-Suslin) pour le Calcul Formel. Math. Nachr.149, 231–253 (1990)

    Google Scholar 

  11. Fitchas, N., Giusti, M., Smietanski, F.: Sur la complexité du théorème des zéros. Preprint Ecole Polytechnique Palaiseau (1992)

  12. Giusti, M., Heintz, J.: La détermination des points isolés et de la dimension d'une variété algébrique peut se faire en temps polynomial. To appear in Proc. Int. Meeting on Commutative Algebra, Cortona, 1991

  13. Giusti, M., Heintz, J., Sabia, J.: On the efficiency of effective Nullstellensätze. Comput. Complexity3, 56–95 (1993)

    Google Scholar 

  14. Heintz, J.: Definability and fast quantifier elimination in algebraically closed fields. Theoret. Comput. Sci.24, 239–277 (1983)

    Google Scholar 

  15. Iversen, B.: Generic Local Structures in Commutative Algebra. Lect. Notes in Math. vol.310. Berlin, Heidelberg, New York: Springer 1973

    Google Scholar 

  16. Jouanolou, J.-P.: Théorèmes de Bertini et applications. Progress in Math. vol.42. Basel: Birkhäuser (1983)

    Google Scholar 

  17. Kreuzer, M., Kunz, E.: Traces in strict Frobenius algebras and strict complete intersections. J. Reine Angew. Math.381, 181–204 (1987)

    Google Scholar 

  18. Kollár, J.: Sharp effective Nullstellensatz. J. AMS1, 963–975 (1988)

    Google Scholar 

  19. Kunz, E.: Kälher Differentials. Adv. Lect. in Math. Vieweg Verlag (1986)

  20. Logar, A.: A computational proof of the Noether normalization lemma. Proc. 6th Int. Conf. Applied Algebra, Algebraic Algorithms and Error Correcting Codes AAECC-6, Roma 1988, Lecture Notes in Computer Sciences vol.357, pp. 259–273. Berlin, Heidelberg, New York: Springer 1989

    Google Scholar 

  21. Matsumura, H.: Commutative Algebra. Benjamin (1970)

  22. Matsumura, H.: Commutative ring theory. Cambridge Studies in Adv. Math. vol.8. Cambridge University Press (1989)

  23. Mumford, D.: The Red Book of Varieties and Schemes. Lect. Notes in Math. vol.1358. Berlin, Heidelberg, New York: Springer 1988

    Google Scholar 

  24. Pedersen, P., Roy, M.-F., Szpirglas, A.: Counting real zeros in the multivariate case. To appear in Proc. MEGA 92

  25. Scheja, G., Storch, U.: Über Spurfunktionen bei vollständigen Durchschnitten. J. Reine Angew. Math.278, 174–190 (1975)

    Google Scholar 

  26. Teissier, B.: Résultats récents d'algèbre commutative effective. Séminaire Bourbaki 1989–1990, Astérisque vol.189–190, 107–131 (1991)

    Google Scholar 

  27. Vasconcelos, W.: Jacobian Matrices and Constructions in Algebra. Proc. 9th Int. Conf. Applied Algebra, Algebraic Algorithms and Error Correcting Codes AAECC-9, New Orleans, 1991, LN Comput. Sci. vol.539, pp. 48–64. Berlin, Heidelberg, New York: Springer 1992

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Partially supported by UBACYT and CONICET (Argentina)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sabia, J., Solernó, P. Bounds for traces in complete intersections and degrees in the Nullstellensatz. AAECC 6, 353–376 (1995). https://doi.org/10.1007/BF01198015

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01198015

Keywords

Navigation