Skip to main content
Log in

Existence and efficient construction of fast Fourier transforms on supersolvable groups

  • Published:
computational complexity Aims and scope Submit manuscript

Abstract

The linear complexityL K(A) of a matrixA over a fieldK is defined as the minimal number of additions, subtractions and scalar multiplications sufficient to evaluateA at a generic input vector. IfG is a finite group andK a field containing a primitive exp(G)-th root of unity,L K(G):= min{L K(A)|A a Fourier transform forKG} is called theK-linear complexity ofG. We show that every supersolvable groupG has amonomial Fourier Transform adapted to a chief series ofG. The proof is constructive and gives rise to an efficient algorithm with running timeO(|G|2log|G|). Moreover, we prove that these Fourier transforms are efficient to evaluate:L K(G)≤8.5|G|log|G| for any supersolvable groupG andL K(G)≤1.5|G|log|G| for any 2-groupG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M.D. Atkinson (ed.),Computational Group Theory, Academic Press, 1984.

  2. L. Babai, L. Rónyai, Computing Irreducible Representations of Finite Groups,Proc. 30th IEEE Symp. Foundations of Comput. Science, 1989, 93–98.

  3. U. Baum,Existenz und effiziente Konstruktion schneller Fouriertransformationen überauflösbarer Gruppen, Dissertation, Universität Bonn, 1991.

  4. U. Baum, M. Clausen, Some Lower and Upper Complexity Bounds for Generalized Fourier Transforms and Their Inverses,SIAM J. Comput.,2 (1991), 451–459.

    Google Scholar 

  5. U. Baum, M. Clausen, B. Tietz, Improved Upper Complexity Bounds for the Discrete Fourier Transform,AAECC,2 (1991), 35–43.

    Google Scholar 

  6. T. Beth,Verfahren der schnellen Fourier-Transformation, Teubner, 1984.

  7. T. Beth, On the Computational Complexity of the General Discrete Fourier Transform,Theor. Comp. Sci.,51 (1987), 331–339.

    Google Scholar 

  8. L.I. Bluestein, A Linear Filtering Approach to the Computation of the Discrete Fourier Transform,IEEE Trans.,AU 18 (1970), 451–455.

    Google Scholar 

  9. J. Bruck, Harmonic Analysis of Polynomial Threshold Functions,SIAM J. Disc. Math.,3 (1990), 168–177.

    Google Scholar 

  10. G. Butler, J. Cannon,Introduction to Computational Group Theory, Computers & Mathematics, Tutorial Minicourse Notes, MIT, Cambridge, MA, 1989.

    Google Scholar 

  11. J. Cannon, An Introduction to the Group Theory Language CAYLEY, in: [1] 145–183.

  12. M. Clausen,Beiträge zum Entwurf schneller Spektraltransformationen, Habilitationsschrift, Universität Karlsruhe, 1988.

  13. M. Clausen, Fast Fourier Transforms for Metabelian Groups,SIAM J. Comput.,18 (1989), 584–593.

    Google Scholar 

  14. M. Clausen, Fast Generalized Fourier Transforms,Theor. Comp. Sci.,67 (1989), 55–63.

    Google Scholar 

  15. J.W. Cooley, J.W., Tukey, An Algorithm for the Machine Calculation of Complex Fourier Series,Math. Comp.,19 (1965), 297–301.

    Google Scholar 

  16. C.W. Curtis, I. Reiner,Representation Theory of Finite Groups and Associative Algebras, Wiley & Sons, 1962.

  17. P. Diaconis, A Generalization of Spectral Analysis with Application to Ranked Data,Ann. Statistics,17 (1989), 949–979.

    Google Scholar 

  18. P. Diaconis,Group Representations in Probability and Statistics, Institute of Mathematical Statistics Lecture Notes-Monograph Series,11, Hayward, CA, 1988.

  19. G. Havas, M.F. Newman, Calculating Presentations for Certain Kinds of Quotient Groups,Proc. Assoc. Comput. Mach. SYMSAC'76, 1976, 2–8.

  20. B. Huppert Endliche Gruppen I, Springer, 1967.

  21. B. Huppert, N. Blackburn,Finite Groups II, Springer, 1982.

  22. S.L. Hurst, D.M., Miller, J.C. Muzio,Spectral Techniques in Digital Logic, Academic Press, 1985.

  23. G.J. Janusz, Primitive Idempotents in Group Algebras,Proc. Am. Math. Soc.,17 (1966), 520–523.

    Google Scholar 

  24. M.G. Karpovsky (ed.),Spectral Techniques and Fault Detection, Academic Press, 1985.

  25. D.J. Klein, C.H. Carlisle, F.A. Matsen, Symmetry Adaptation to Sequences of Finite Groups,Advances in Quantum Chemistry,5 (1970), Academic Press, 219–260.

    Google Scholar 

  26. C.R. Leedham-Green, A Soluble Group Algorithm, in: [1], 85–101.

  27. N. Linial, Y. Mansour, N. Nisan, Constant Depth Circuits, Fourier Transform, and Learnability,Proc. 30th IEEE Symp. Foundations of Comput. Science, 1989, 574–579.

  28. J.D. Lipson,Elements of Algebra and Algebraic Computing, Benjamin-Cummings, 1981.

  29. J. Morgenstern, Note on a Lower Bound of the Linear Complexity of the Fast Fourier Transform,J. Assoc. Comput. Mach.,20/2 (1973), 305–306.

    Google Scholar 

  30. K. Murota, K. Ikeda, Computational Use of Group Theory in Bifurcation Analysis of Symmetric Structures,SIAM J. Sci. Stat. Comput.,12 (1991), 273–297.

    Google Scholar 

  31. K. Niederdrenk,Die endliche Fourier- und Walsh-Transformation mit einer Einführung in die Bildverarbeitung, Vieweg, 1982.

  32. R.A. Parker, The Computer Calculation of Modular Characters (The Meat-Axe), in: [1], 267–274.

  33. W. Plesken, Towards a Soluble Quotient Algorithm,J. Symbolic Computation,4 (1987), 111–122.

    Google Scholar 

  34. D. Rockmore, Fast Fourier Analysis for Abelian Group Extensions,Advances in Applied Math.,11 (1990), 164–204.

    Google Scholar 

  35. A. Schönhage, V. Strassen, Schnelle Multiplikation großer Zahlen,Computing,7 (1971), 281–292.

    Google Scholar 

  36. J.P. Serre,Linear Representations of Finite Groups, Springer, 1977.

  37. E.A. Trachtenberg, M.G. Karpovsky Filtering in a Communication Channel by Fourier Transforms over Finite Groups, in: [24], 179–216.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baum, U. Existence and efficient construction of fast Fourier transforms on supersolvable groups. Comput Complexity 1, 235–256 (1991). https://doi.org/10.1007/BF01200062

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01200062

Key words

Subject classifications

Navigation