Abstract
Letk be an infinite and perfect field,x 1, ...,x n indeterminates overk and letf 1, ...,f s be polynomials ink[x 1, ...,x n ] of degree bounded by a given numberd, which satisfiesd≥n. We prove an effective affine Nullstellensatz of the following particular form:
For arbitrary given parametersd, s, n there exists a probabilistic (randomized) arithmetic network overk of sizes O(1) d O(n) and depthO(n 4log2 sd) solving the following task:
It decides whether the ideal generated byf 1, ...,f s ink[x 1, ...,x n ] is trivial and, if this is the case, it produces a straight-line program of sizes O(1) d O(n) and depthO(n 4log2 sd) in the function fieldk(x 1, ...,x n ) which computes polynomialsp 1, ...,p s ofk[x 1, ...,x n ] of degree\(d^{O(n^2 )} \) satisfying
Similar content being viewed by others
References
J. L. Balcázar, J. Díaz, and J. Gabarró,Structural Complexity I, EATCS Monographs on Theoretical Computer Science11, Springer, 1988.
S. J. Berkowitz, On computing the determinant in small parallel time using a small number of processors,Inform. Process. Lett. 18 (1984), 147–150.
W. S. Brown, On Euclid's algorithm and the computation of polynomial greatest common divisors,J. Assoc. Comput. Mach. 18 (1971), 478–504.
D. Brownawell, Bounds for the degrees in the Nullstellensatz,Ann. of Math. (Second Series)126 (1987), 577–591.
L. Caniglia,Complejidad de algoritmos en geometría computacional, Doctoral Thesis, Universidad de Buennos Aires, 1989.
L. Caniglia, A. Galligo, andJ. Heintz, Borne simple exponentielle pour les degrés dans le théorème des zéros sur un corps de caractéristique quelconque,C. R. Acad. Sci. Paris, Série I Math. 307 (1988), 255–258.
L. Caniglia, A. Galligo, and J. Heintz, Some new effectivity bounds in computational geometry, inApplied Algebra, Algebraic Algorithms andError-Correcting Codes, Proc. 6th Intern. Conf. AAECC-6, Rome 1988, T. Mora, ed., Springer LN Comput. Sci.357 (1989), 131–151.
L. Caniglia, J.A. Guccione, and J.J. Guccione, Local membership problems for polynomial ideals, inEffective Methods in Algebraic Geometry, Proc. Intern. Conf. MEGA 90, Castiglioncello 1990, T. Mora and C. Traverso, eds., Progress in Mathematics94, Birkhäuser (1991), 31–45.
A. Dickenstein, N. Fitchas, M. Giusti, andC. Sessa, The membership problem for unmixed polynomial ideals is solvable in single exponential time,Discrete Appl. Math. 33 (1991), 73–94,Special issue 7th Intern. Conf. Applied Algebra, Algebraic Algorithms and Error-Correcting Codes AAECC-7, Toulouse 1989.
N. Fitchas andA. Galligo, Nullstellensatz effectif et Conjecture de Serre (Théorème de Quillen-Suslin) pour le Calcul Formel,Math. Nachr. 149 (1990), 231–253.
J. von zur Gathen, Parallel arithmetic computations: a survey, inProc. 13th Symp. MFCS 1986, Springer LN Comput. Sci. 233 (1986), 93–112.
M. Giusti and J. Heintz, Algorithmes—disons rapides—pour la décomposition d'une variété algébrique en composantes irréductibles et équidimensionelles, inEffective Methods in Algebraic Geometry, Proc. Intern. Conf. MEGA 90, Castiglioncello 1990, T. Mora and C. Traverso, eds., Progress in Mathematics94, Birkhäuser (1991a), 169–193.
M. Giusti and J. Heintz,La détermination des points isolés et de la dimension d'une variété algébrique peut se faire en temps polynomial, Manuscript, Centre de Mathématiques, École Polytechnique, Palaiseau (1991b). To appear inProc. Intern. Meeting on Commutative Algebra, Cortona, Cambridge University Press, 1991.
J. Heintz, Definability and fast quantifier elimination over algebraically closed fields,Theoret. Comput. Sci. 24 (1983), 239–277; Russian translation in:Kybernetičeskij Sbornik, Novaja Serija, Vyp. 22, Mir Moskva (1985), 113–158.
J. Heintz, On the computational complexity of polynomials and bilinear mappings. A survey, inApplied Algebra, Algebraic Algorithms and Error-Correcting Codes, 5th Intern. Conf. AAECC-5, Menorca 1987, L. Huguet and A. Poli, eds., Springer LN Comput. Sci.356 (1989), 269–300.
J. Heintz and C.P. Schnorr, Testing polynomials which are easy to compute, inLogic and Algorithmic. An International Symposium held in Honour of Ernst Specker, Monographie de l'Enseignement Mathématique, Genève 1982, 237–254; also published in12th Annual ACM Symp. Theory of Computing (1980), 262–268.
J.P. Jouanolou,Théorèmes de Bertini et applications, Progress in Mathematics42, Birkhäuser 1983.
H. Kobayashi, S. Moritsugu and R.W. Hogan, On solving systems of algebraic equations, inProc. Intern. Symp. on Symbolic and Algebraic Computation, ISSAC 88, Rome 1988, P. Gianni, ed., Springer LN Comp. Sci.358 (1989).
J. Kollár, Sharp effective Nullstellensatz,J. Amer. Math. Soc. 1 (1988), 963–975.
T.Y. Lam,Serre's Conjecture, Springer LN Math.635 (1978).
H. Matsumura,Commutative ring theory, Cambridge Studies in Advanced Mathematics8, Cambridge University Press, Cambridge 1989.
K. Mulmuley, A fast parallel algorithm to compute the rank of a matrix over an arbitrary field,Combinatorica 7 (1987), 101–104.
F. Rossi and W. Spangher, Some effective methods in the openness of loci for Cohen-Macaulay and Gorenstein properties, inEffective Methods in Algebraic Geometry, Proc. Intern. Conf. MEGA 90, Castiglioncello 1990, T. Mora and C. Traverso, eds., Progress in Mathematics94, Birkhäuser (1990), 441–455.
H.-J. Stoss, On the representation of rational functions of bounded complexity,Theoret. Comput. Sci. 64 (1989), 1–13.
V. Strassen, Berechnung und Programm I,Acta Inform. 1 (1972), 320–334.
B. Teissier, Résultats récents d'algèbre commutative effective, inSéminaire Bourbaki, Volume 1989/90, Exposé 718, novembre 1989, Astérisque189–190 (1991), 107–131.
L.G. Valiant, S. Skyum, S. Berkowitz andC. Rackoff, Fast parallel computation of polynomials using few processors,SIAM J. Comput. 12 (1983), 641–644.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Giusti, M., Heintz, J. & Sabia, J. On the efficiency of effective Nullstellensätze. Comput Complexity 3, 56–95 (1993). https://doi.org/10.1007/BF01200407
Issue Date:
DOI: https://doi.org/10.1007/BF01200407