Skip to main content
Log in

Counting curves and their projections

  • Published:
computational complexity Aims and scope Submit manuscript

Abstract

Some deterministic and probabilistic methods are presented for counting and estimating the number of points on curves over finite fields, and on their projections. The classical question of estimating the size of the image of a univariate polynomial is a special case. For curves given by sparse polynomials, the counting problem is #P-complete via probabilistic parsimonious Turing reductions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • W. R. Alford, A. Granville, andC. Pomerance, There are infinitely many Carmichael numbers.Annals of Mathematics 140 (1994), 703–722.

    Google Scholar 

  • E. Bach, Weil bounds for singular curves.Applicable algebra in Engineering, Communication and Computing 7 (1996), 289–298.

    Google Scholar 

  • J. Birch andH. P. F. Swinnerton-Dyer, Note on a problem of Chowla.Acta Arith. 5 (1959), 417–423.

    Google Scholar 

  • E. Bombieri, On exponential sums in finite fields.Amer. J. Math. 88 (1966), 71–105.

    Google Scholar 

  • A. L. Chistov and D. Yu. Grigoryev, Polynomial-time factoring of the multivariable polynomials over a global field. LOMI preprint E-5-82, Leningrad, USSR, 1982.

  • M. Clausen, A. Dress, J. Grabmeier, andM. Karpinski, On zero testing and interpolation ofk-sparse multivariate polynomials over finite fields.Theor. Computer Science 84 (1991), 151–164.

    Google Scholar 

  • D. Coppersmith andS. Winograd, Matrix multiplication via arithmetic progressions.J. Symb. Comp. 9 (1990), 251–280.II. Davenport,Multiplicative Number Theory. Springer-Verlag, Second edition, 1980.

    Google Scholar 

  • A. Díaz and E. Kaltofen, On computing greatest common divisors with polynomials given by black boxes for their evaluations. InProc. ISSAC 1995, 1995.

  • M. D. Fried and M. Jarden,Field Arithmetic. Springer-Verlag, 1986.

  • M. R. Garey andD. S. Johnson,Computers and intractability: A guide to the theory of NP-Completeness. W. H. Freeman, San Francisco CA, 1979.

    Google Scholar 

  • J. Von zur Gathen, Tests for permutation polynomials.SIAM J. Comput. 20(3) (1991), 591–602.

    Google Scholar 

  • J. von zur Gathen andE. Kaltofen, Factorization of multivariate polynomials over finite fields.Math. Comp. 45 (1985), 251–261.

    Google Scholar 

  • J. von zur Gathen andV. Shoup, Computing Frobenius maps and factoring polynomials.Computational complexity 2 (1992), 187–224.

    Google Scholar 

  • J. von zur Gathen and I. E. Shparlinski, Components and projections of curves over finite fields. InProc. 5th Int. Symp. on Algorithms and Computation ISSAC '94, vol. 834 ofSpringer Lecture Notes in Computer Science, 1994, 297–305. SIAM J. Comput., to appear.

  • J. von zur Gathen and I. E. Shparlinski, Finding points on curves over finite fields. InProc. 36th Ann. IEEE Symp on Foundations of Computer Science, 1995, 284–292.

  • D. Yu. Grigoryev and M. Karpinski, An approximation algorithm for the number of zeros of arbitrary polynomials overGF(q). InProc. 20th Ann. IEEE Symp. Foundations of Computer Science, 1991, 662–669.

  • D. Yu. Grigoryev, M. Karpinski, andM. F. Singer, Fast parallel algorithms for sparse multivariate polynomial interpolation over finite fields.SIAM J. Comp. 19 (1990), 1059–1063.

    Google Scholar 

  • R. Hartshorne,Algebraic Geometry. Springer-Verlag, 1977.

  • M.-D. Huang and D. Ierardi, Counting rational points on curves over finite fields. InProc. 34th Ann. IEEE Symp. on Foundations of Computer Science, Palo Alto CA, 1993, 616–625.

  • E. Kaltofen, Fast parallel absolute irreducibility testing.J. Symb. Computation 1 (1985), 57–67.

    Google Scholar 

  • R. M. Karp, M. Luby, andN. Madras, Monte-Carlo approximation algorithms for enumeration problems.J. Algorithms 10(3) (1989), 429–448.

    Google Scholar 

  • M. Karpinski andM. Luby, Approximating the number of solutions of aGF[2] polynomial.J. Algorithms 14 (1993), 280–287.

    Google Scholar 

  • A. K. Lenstra, Factoring multivariate polynomials over finite fields.J. Comput. System Sci. 30 (1985), 235–248.

    Google Scholar 

  • R. Lidl andH. Niederreiter,Finite Fields, vol. 20 ofEncyclopedia of Mathematics and its Applications. Addison-Wesley, Reading MA, 1983.

    Google Scholar 

  • K. Ma andJ. von zur Gathen, Tests for permutation functions.Finite Fields and their Applications 1 (1995), 31–56.

    Google Scholar 

  • K. S. McCurley, Explicit zero-free regions for DirichletL-functions.J. Number Theory 19 (1984), 7–32.

    Google Scholar 

  • R. Pila, Frobenius maps of Abelian varieties and finding roots of unity in finite fields.Math. Comp. 55 (1990), 745–763.

    Google Scholar 

  • D. A. Plaisted, Sparse complex polynomials and polynomial reducibility.J. Comp. and System Sciences 14 (1977), 210–221.

    Google Scholar 

  • D. A. Plaisted, New NP-hard and NP-complete polynomial and integer divisibility problems.Theor. Computer Science 31 (1984), 125–138.

    Google Scholar 

  • A. Quick, Some GCD and divisibility problems for sparse polynomials. Technical Report 191/86, Department of Computer Science, University of Toronto, 1986.

  • J. B. Rosser andL. Schoenfeld, Approximate formulas for some functions of prime numbers.Ill. J. Math. 6 (1962), 64–94.

    Google Scholar 

  • R. J. Schoof, Elliptic curves over finite fields and the computation of square roots modp.Math. Comp. 44(170) (1985), 483–494.

    Google Scholar 

  • J. T. Schwartz, Fast probabilistic algorithms for verification of polynomial identities.J. Assoc. Computing Machinery 27 (1980), 701–717.

    Google Scholar 

  • J.-P. Serre, Sur le nombre des points rationels d'une courbe algébrique sur un corps fini.C.R. Acad. Sci. Paris, Ser. 1 296 (1983a), 397–402.

    Google Scholar 

  • J.-P. Serre, Nombre de points des courbes algébriques sur F q .Sémin. de Théorie des Nombres de Bordeaux (1983b), 1–8.

  • I. R. Shafarevich,Basic algebraic geometry. Grundlehren Band 213. Springer Verlag, 1974.

  • V. Shoup, Searching for primitive roots in finite fields.Math. Comp. 58(197) (1992), 369–380.

    Google Scholar 

  • I. E. Shparlinski, On primitive elements in finite fields and on elliptic curves.Mat. Sbornik 181(9) (1990), 1196–1206. Math. USSR Sbornik71 (1992), 41–50.

    Google Scholar 

  • I. E. Shparlinski,Computational and algorithmic problems in finite fields, vol. 88 ofMathematics and its applications. Kluwer Academic Publishers, 1992a.

  • I. E. Shparlinski, A deterministic test for permutation polynomials.Computational complexity 2 (1992b), 129–132.

    Google Scholar 

  • I. E. Shparlinski andA. N. Skorobogatov, Exponential sums and rational points on complete intersections.Mathematika 37 (1990), 201–208.

    Google Scholar 

  • I. M. Vinogradov,Elements of number theory. Dover Publ. New York NY, 1954.

    Google Scholar 

  • S. G. Vladut andV. G. Drinfeld, Number of points on an algebraic curve.Funktsional'nyi Analis i Prilogenija 17(1) (1983), 68–69. Functional Analysis and its Appl.17 (1983), 53–54.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

von zur Gathen, J., Karpinski, M. & Shparlinski, I. Counting curves and their projections. Comput Complexity 6, 64–99 (1996). https://doi.org/10.1007/BF01202042

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01202042

Keywords