Skip to main content
Log in

On the structure of bull-free perfect graphs

  • Original Papers
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

A bull is a graph obtained by adding a pendant vertex at two vertices of a triangle. Chvátal and Sbihi showed that the Strong Perfect Graph Conjecture holds for bull-free graphs. We show that bull-free perfect graphs are quasi-parity graphs, and that bull-free perfect graphs with no antihole are perfectly contractile. Our proof yields a polynomial algorithm for coloring bull-free strict quasi-parity graphs

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berge, C.: Les problèmes de coloration en théorie des graphes. Publ. Inst. Stat. Univ. Paris9, 123–160 (1960)

    Google Scholar 

  2. Bertschi, M.E.: Perfectly contractile graphs. J. Comb. Theory Ser.B 50, 222–230 (1990)

    Google Scholar 

  3. Chvátal, V.: Perfectly ordered graphs. In Berge C. and V. Chvátal, editors, Topics on Perfect Graphs, pages 63–65. North-Holland. Amsterdam, 1984

    Google Scholar 

  4. Chvátal, V.: A class of perfectly orderable graphs. Technical Report 89573-OR, Forschungsbereich für Diskrete Mathematik, Institut für Ökonometrie und Operations Research, Rheinische Friedrich Wilhelms Universitaet, Bonn, Germany, May 1989

    Google Scholar 

  5. Chvátal, V., Sbihi, N.: Bull-free Berge graphs are perfect. Graph. Comb.3, 127–139 (1987)

    Google Scholar 

  6. Corneil, D.G., Perl, Y., Stewart, L.K.: A linear recognition algorithm for cographs. SIAM J. Comput.14, 926–934 (1985)

    Google Scholar 

  7. De Figueiredo, C.M.H.: Um Estudo de Problemas Combinatórios em Grafos Perfeitos. PhD thesis, COPPE/UFRJ, Rio de Janeiro, 1991. In Portuguese

    Google Scholar 

  8. Fonlupt, J., Uhry, J.P.: Transformations which preserve perfectness andh-perfectness of graphs. Annals of Disc. Math.16, 83–85 (1982)

    Google Scholar 

  9. Grötschel, M., Lovász, L., Schrijver, A.: Polynomial algorithms for perfect graphs. In C. Berge and V. Chvátal, editors, Topics on Perfect Graphs (Ann. Discrete Math. 21), pages 325–356. North-Holland, Amsterdam, 1984

    Google Scholar 

  10. Hayward, R.: Weakly triangulated graphs. J. Comb. Theory Ser.B 39, 200–209 (1985)

    Google Scholar 

  11. Hayward, R., Hoàng, C.T., Maffray, F.: Optimizing weakly triangulated graphs. Graph. Comb.5, 339–349 (1989). See erratum in vol. 6, 1990, p. 33–35

    Google Scholar 

  12. Hertz, A., de Werra, D.: Perfectly orderable graphs are quasi-parity graphs: a short proof. Disc. Math.68, 111–113 (1988)

    Google Scholar 

  13. Hoàng, C.T.: Algorithms for minimum weighted coloring of perfectly ordered, comparability, triangulated and clique-separable graphs. Technical Report 90832, Forschungsinstitut für Diskrete Mathematik, Institut für Operations Research, Universitaet Bonn, Germany, March 1990. Disc. Appl. Math. (to be published)

    Google Scholar 

  14. Meyniel, H.: A new property of critical imperfect graphs and some consequences. Europ. J. Comb.8, 313–316 (1987)

    Google Scholar 

  15. Reed, B.A.: Problem session on parity problems. Perfect Graphs Workshop, Princeton University, New Jersey, June 1993

  16. Reed, B.A., Sbihi, N.: Recognizing bull-free perfect graphs. preprint, 1990

  17. Seinsche, S.: On a property of the class ofn-colorable graphs. J. Comb. Theory Ser. B16, 191–193 (1974)

    Google Scholar 

  18. Spinrad, J.:P 4-trees and substitution decomposition. Disc. Appl. Math.39, 263–291 (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Partially supported by CNPq, grant 30 1160/91.0

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Figueiredo, C.M.H., Maffray, F. & Porto, O. On the structure of bull-free perfect graphs. Graphs and Combinatorics 13, 31–55 (1997). https://doi.org/10.1007/BF01202235

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01202235

Keywords

Navigation