Skip to main content
Log in

AnO(n 2) incremental algorithm for modular decomposition of graphs and 2-structures

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

This paper gives anO(n 2) incremental algorithm for computing the modular decomposition of 2-structures [1], [2]. A 2-structure is a type of edge-colored graph, and its modular decomposition is also known as the prime tree family. Modular decomposition of 2-structures arises in the study of relational systems. The modular decomposition of undirected graphs and digraphs is a special case, and has applications in a number of combinatorial optimization problems. This algorithm generalizes elements of a previousO(n 2) algorithm of Muller and Spinrad [3] for the decomposition of undirected graphs. However, Muller and Spinrad's algorithm employs a sophisticated data structure that impedes its generalization to digraphs and 2-structures, and limits its practical use. We replace this data structure with a scheme that labels each edge with at most one node, thereby obtaining an algorithm that is both practical and general to 2-structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Ehrenfeucht and G. Rozenberg, Theory of 2-structures, part 1: Clans, basic subclasses, and morphisms,Theoretical Computer Science,70 (1990), 277–303.

    Google Scholar 

  2. A. Ehrenfeucht and G. Rosenberg, Theory of 2-structures, part 2: Representations through labeled tree families,Theoretical Computer Science,70 (1990), 305–342.

    Google Scholar 

  3. J. H. Muller and J. Spinrad, Incremental modular decomposition,Journal of the Association for Computing Machinery,36 (1989), 1–19.

    Google Scholar 

  4. R. H. Möhring and F. J. Radermacher, Substitution decomposition for discrete structures and connections with combinatorial optimization,Annals of Discrete Mathematics,19 (1984), 257–356.

    Google Scholar 

  5. R. H. Möhring, Algorithmic aspects of the substitution decomposition in optimization over relations, set systems and boolean functions,Annals of Operation Research,4 (1985/6), 195–225.

    Google Scholar 

  6. R. H. Möhring, Algorithmic aspects of comparability graphs and interval graphs, inGraphs and Orders (I. Rival, editor), Reidel, Boston, 1985, pp. 41–101.

    Google Scholar 

  7. J. H. Schmerl, Arborescent structures, II: interpretability in the theory of trees,Transactions of the American Mathematical Society,266 (1981), 629–643.

    Google Scholar 

  8. T. Gallai, Transitiv orientierbare graphen,Acta Mathematica Acadamiae Scientiarum Hungaricae,18 (1967), 25–66.

    Google Scholar 

  9. D. Kelly, Comparability graphs, inGraphs and Order (I. Rival, editor), Reidel, Boston, 1985, pp. 3–40.

    Google Scholar 

  10. M. Habib and M. C. Maurer, On the X-join decomposition for undirected graphs,Discrete Applied Mathematics,1 (1979), 201–207.

    Google Scholar 

  11. M. C. Golumbic,Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York, 1980.

    Google Scholar 

  12. A. Blass, Graphs with unique maximal dumpings,Journal of Graph Theory,2 (1978), 19–24.

    Google Scholar 

  13. L. N. Shevrin and N. D. Filippov, Partially ordered sets and their comparability graphs,Siberian Mathematical Journal,11 (1970), 497–509.

    Google Scholar 

  14. D. G. Corneil, Y. Perl, and L. K. Stewart, A linear recognition algorithm for cographs,SIAM Journal on Algebraic and Discrete Methods,3 (1985), 926–934.

    Google Scholar 

  15. J. Valdes, R. E. Tarjan, and E. L. Lawler, The recognition of series-parallel digraphs,SIAM Journal on Computing,11 (1982), 299–313.

    Google Scholar 

  16. A. Ehrenfeucht and R. M. McConnell, Ak-structure generalization of the theory of 2-structures,Theoretical Computer Science,132 (1994), 209–227.

    Google Scholar 

  17. W. H. Cunningham and J. Edmonds, A combinatorial decomposition theory,Canadian Journal of Mathematics,32 (1980), 734–765.

    Google Scholar 

  18. D. Wagner, Decomposition of k-ary relations,Discrete Mathematics,81 (1990), 303–322.

    Google Scholar 

  19. L. O. James, R. G. Stanton, and D. D. Cowan, Graph decomposition for undirected graphs, inProceedings of the 3rd South-Eastern Conference on Combinatorics, Graph Theory and Computing (F. Hoffman and R. B. Levow, editors), Utilitas Mathematica, Winnipeg, 1972, pp. 281–290.

    Google Scholar 

  20. B. Buer and R. H. Möhring, A fast algorithm for the decomposition of graphs and posets,Mathematics of Operations Research,8 (1983), 170–184.

    Google Scholar 

  21. M. C. Golumbic, Comparability graphs and a new matroid,Journal of Combinatorial Theory, Series B,22 (1977), 68–90.

    Google Scholar 

  22. W. H. Cunningham, Decomposition of directed graphs,SIAM Journal of Algebraic and Discrete Methods,3 (1982), 214–228.

    Google Scholar 

  23. G. Steiner, Machine Scheduling with Precedence Constraints, Ph.D. thesis, University of Waterloo, Waterloo, Ontario, 1982.

    Google Scholar 

  24. C. L. McCreary, An Algorithm for Parsing a Graph Grammar, Ph.D. thesis, University of Colorado, Boulder, Co, 1987.

    Google Scholar 

  25. A. Cournier and M. Habib, An Efficient Algorithm To Recognize Prime Undirected Graphs, Technical Report R.R. LIRMM 92-023, Laboratoire D'Informatique, de Robotique et de Microelectronique de Montpellier, 1992.

  26. J. P. Spinrad,P 4 trees and substitution decomposition,Discrete Applied Mathematics,39 (1992), 263–291.

    Google Scholar 

  27. R. M. McConnell and J. P. Spinrad, Linear-time modular decomposition of undirected graphs and efficient transitive orientation of comparability graphs,Proceedings of the Symposium on Discrete Algorithms, 1993, pp. 536–545.

  28. M. C. Maurer, Joints et decompositions premiéres dans les graphes, Thèse 3ème cycle, Université de Paris VI, 1977.

  29. A. Ehrenfeucht, T. Harju, and G. Rozenberg, Incremental construction of 2-structures,Discrete Mathematics,128 (1994), 113–141.

    Google Scholar 

  30. A. Ehrenfeucht, H. N. Gabow, R. M. McCeonnell, and S. J. Sullivan, AnO(n 2) algorithm to compute the prime tree family of a 2-structure,Journal of Algorithms,16 (1994), 283–294.

    Google Scholar 

  31. M. Chein, M. Habib, and M. C. Maurer, Partitive hypergraphs,Discrete Mathematics,37 (1981), 35–50.

    Google Scholar 

  32. J. H. Schmerl and W. T. Trotter, Critically indecomposable partially ordered sets, graphs, tournaments and other binary relational structures,Discrete Mathematics,113 (1993), 191–205.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by K. Mehlhorn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McConnell, R.M. AnO(n 2) incremental algorithm for modular decomposition of graphs and 2-structures. Algorithmica 14, 229–248 (1995). https://doi.org/10.1007/BF01206330

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01206330

Key words

Navigation