Skip to main content

Advertisement

Log in

Feedback stabilization of a hybrid PDE-ODE system: Application to an overhead crane

  • Published:
Mathematics of Control, Signals and Systems Aims and scope Submit manuscript

Abstract

This paper deals with the feedback stabilization of a hybrid PDE-ODE system which models an overhead crane with a flexible cable. The well-posedness of the closed-loop system is established, and asymptotic stabilization is proved, using LaSalle's Invariance Principle, for a class of nonlinear feedback laws. Estimates of the rate of decay are provided for a simplified model. Illustrative simulations are displayed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Abramowitz, I. Stegun,Handbook of Mathematical Functions, Dover, New York, 1965.

    Google Scholar 

  2. B. d'Andréa-Novel, F. Boustany, F. Conrad, Control of an overhead crane: Stabilization of flexibilities,Proceedings of the IFIP Boundary Control and Boundary Variations Workshop, Sophia-Antipolis, 1990, pp. 1–26. Lecture Notes in Control and Information Sciences, Vol. 178. Springer-Verlag, Berlin, 1992.

    Google Scholar 

  3. B. d'Andréa-Novel, F. Boustany, B. P. Rao, Control of an overhead crane: Stabilization of a hybrid PDE-ODE system,Proceedings of the First ECC, Grenoble, 1991.

  4. F. Boustany, Commande non linéaire adaptive de systèmes mécaniques de type pont roulant. Stabilisation frontière d'EDP, Thèse Ecole des Mines de Paris, 1992.

  5. H. Brezis,Opérateurs Maximaux Monotones et Semi-Groupes de Contraction dans les espaces de Hilbert, North-Holland, Amsterdam, 1973.

    Google Scholar 

  6. H. Brezis,Analyse Fonctionnelle, Théories et Applications, Masson, Paris, 1983.

    Google Scholar 

  7. F. Conrad, J. Leblond, J. P. Marmorat, Stabilization of second-order evoluation equations by unbounded nonlinear feedback,Proceedings of the IFAC Symposium on Control of Distributed Parameter Systems, Perpignan, 1989, pp. 111–116.

  8. F. Conrad, M. Pierre, Stabilization of Euler-Bernouilli beams by nonlinear boundary feedback, INRIA Report No. 1235, 1990.

  9. R. Courant, D. Hilbert,Methods of Mathematical Physics, Vol. II, Interscience, New York, 1962.

    Google Scholar 

  10. C. M. Dafermos, M. Slemrod, Asymptotic behaviour of nonlinear contraction semigroups,J. Fund. Anal.,13 (1973), 97–106.1987.

    Google Scholar 

  11. A. Haraux, Semilinear hyperbolic problems in bounded domains, in Mathematical Reports, Vol. 3 (J. Dieudonné, ed.), Harwood Academic, Gordon and Breach, New York, 1987.

    Google Scholar 

  12. A. Haraux, Une Remarque sur la Stabilisation de certains Systèmes du Deuxième Ordre en Temps,Portugal Math.,56(3) (1989), 245–258.

    Google Scholar 

  13. I. Lasiecka, Stabilization of wave and plate-like equations with nonlinear dissipation on the boundary,J. Differential Equations,79(2) (1989), 340–381.

    Google Scholar 

  14. E. B. Lee, Y. C. You, Stabilization of a hybrid (string/point mass) system,Proceedings of the Fifth International Conference on Systems Engineering, Dayton, Ohio, 1987.

  15. W. Littman, L. Markus, Stabilization of a hybrid system of elasticity by feedback boundary damping,Ann. Mat. Pura Appl.,152 (1988), 281–330.

    Google Scholar 

  16. B. P. Rao, Stabilisation uniforme d'un système hybride en élasticité, C.R. Acad. Sci. Paris Sér. I,316(1993), 261–266.

    Google Scholar 

  17. D. L. Russell, Decay rates for weakly damped systems in Hilbert space obtained with control theoretic methods,J. Differential Equations,19 (1975), 344–370.

    Google Scholar 

  18. L. Schwartz,Méthodes Mathématiques pour la Physique, Masson, Paris, 1965.

    Google Scholar 

  19. M. Slemrod, Feedback stabilization of a linear control system in Hilbert space with ana priori bounded control,Math. Control Signals Systems,2 (1989), 265–285.

    Google Scholar 

  20. I. N. Sneddon,Fourier Transforms, McGraw-Hill, New York, 1951.

    Google Scholar 

  21. E. Zuazua, Some remarks on the boundary stabilization of the wave equation,Proceedings of the IFIP Conference on Control of Boundaries and Stabilization, Clermont Ferrand, 1988, pp. 251–266. Lecture Notes in Control and Information Sciences. Vol. 125. 1989.

  22. E. Zuazua, Uniform stabilization of the wave equation by nonlinear boundary feedback,SIAM J. Control Optim.,28(2) (1990), 466–477.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was supported by a grant from EDF-DER, Chatou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

d'Andréa-Novel, B., Boustany, F., Conrad, F. et al. Feedback stabilization of a hybrid PDE-ODE system: Application to an overhead crane. Math. Control Signal Systems 7, 1–22 (1994). https://doi.org/10.1007/BF01211483

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01211483

Key words

Navigation