Abstract
This paper deals with the feedback stabilization of a hybrid PDE-ODE system which models an overhead crane with a flexible cable. The well-posedness of the closed-loop system is established, and asymptotic stabilization is proved, using LaSalle's Invariance Principle, for a class of nonlinear feedback laws. Estimates of the rate of decay are provided for a simplified model. Illustrative simulations are displayed.
Similar content being viewed by others
References
M. Abramowitz, I. Stegun,Handbook of Mathematical Functions, Dover, New York, 1965.
B. d'Andréa-Novel, F. Boustany, F. Conrad, Control of an overhead crane: Stabilization of flexibilities,Proceedings of the IFIP Boundary Control and Boundary Variations Workshop, Sophia-Antipolis, 1990, pp. 1–26. Lecture Notes in Control and Information Sciences, Vol. 178. Springer-Verlag, Berlin, 1992.
B. d'Andréa-Novel, F. Boustany, B. P. Rao, Control of an overhead crane: Stabilization of a hybrid PDE-ODE system,Proceedings of the First ECC, Grenoble, 1991.
F. Boustany, Commande non linéaire adaptive de systèmes mécaniques de type pont roulant. Stabilisation frontière d'EDP, Thèse Ecole des Mines de Paris, 1992.
H. Brezis,Opérateurs Maximaux Monotones et Semi-Groupes de Contraction dans les espaces de Hilbert, North-Holland, Amsterdam, 1973.
H. Brezis,Analyse Fonctionnelle, Théories et Applications, Masson, Paris, 1983.
F. Conrad, J. Leblond, J. P. Marmorat, Stabilization of second-order evoluation equations by unbounded nonlinear feedback,Proceedings of the IFAC Symposium on Control of Distributed Parameter Systems, Perpignan, 1989, pp. 111–116.
F. Conrad, M. Pierre, Stabilization of Euler-Bernouilli beams by nonlinear boundary feedback, INRIA Report No. 1235, 1990.
R. Courant, D. Hilbert,Methods of Mathematical Physics, Vol. II, Interscience, New York, 1962.
C. M. Dafermos, M. Slemrod, Asymptotic behaviour of nonlinear contraction semigroups,J. Fund. Anal.,13 (1973), 97–106.1987.
A. Haraux, Semilinear hyperbolic problems in bounded domains, in Mathematical Reports, Vol. 3 (J. Dieudonné, ed.), Harwood Academic, Gordon and Breach, New York, 1987.
A. Haraux, Une Remarque sur la Stabilisation de certains Systèmes du Deuxième Ordre en Temps,Portugal Math.,56(3) (1989), 245–258.
I. Lasiecka, Stabilization of wave and plate-like equations with nonlinear dissipation on the boundary,J. Differential Equations,79(2) (1989), 340–381.
E. B. Lee, Y. C. You, Stabilization of a hybrid (string/point mass) system,Proceedings of the Fifth International Conference on Systems Engineering, Dayton, Ohio, 1987.
W. Littman, L. Markus, Stabilization of a hybrid system of elasticity by feedback boundary damping,Ann. Mat. Pura Appl.,152 (1988), 281–330.
B. P. Rao, Stabilisation uniforme d'un système hybride en élasticité, C.R. Acad. Sci. Paris Sér. I,316(1993), 261–266.
D. L. Russell, Decay rates for weakly damped systems in Hilbert space obtained with control theoretic methods,J. Differential Equations,19 (1975), 344–370.
L. Schwartz,Méthodes Mathématiques pour la Physique, Masson, Paris, 1965.
M. Slemrod, Feedback stabilization of a linear control system in Hilbert space with ana priori bounded control,Math. Control Signals Systems,2 (1989), 265–285.
I. N. Sneddon,Fourier Transforms, McGraw-Hill, New York, 1951.
E. Zuazua, Some remarks on the boundary stabilization of the wave equation,Proceedings of the IFIP Conference on Control of Boundaries and Stabilization, Clermont Ferrand, 1988, pp. 251–266. Lecture Notes in Control and Information Sciences. Vol. 125. 1989.
E. Zuazua, Uniform stabilization of the wave equation by nonlinear boundary feedback,SIAM J. Control Optim.,28(2) (1990), 466–477.
Author information
Authors and Affiliations
Additional information
This research was supported by a grant from EDF-DER, Chatou.
Rights and permissions
About this article
Cite this article
d'Andréa-Novel, B., Boustany, F., Conrad, F. et al. Feedback stabilization of a hybrid PDE-ODE system: Application to an overhead crane. Math. Control Signal Systems 7, 1–22 (1994). https://doi.org/10.1007/BF01211483
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF01211483