Skip to main content
Log in

Graphs, causality, and stabilizability: Linear, shift-invariant systems on ℒ2[0, ∞)

  • Published:
Mathematics of Control, Signals and Systems Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

This paper presents a number of basic elements for a system theory of linear, shift-invariant systems on ℒ2[0, ∞). The framework is developed from first principles and considers a linear system to be a linear (possibly unbounded) operator on ℒ2[0, ∞). The properties of causality and stabilizability are studied in detail, and necessary and sufficient conditions for each are obtained. The idea of causal extendibility is discussed and related to operators defined on extended spaces. Conditions for w-stabilizability and w-stability are presented. The graph of the system (operator) plays a unifying role in the definitions and results. We discuss the natural partial order on graphs (viewed as subspaces) and its relevance to systems theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. F. Barman, F. M. Callier, and C. A. Desoer,L 2-stability andL 2-instability of linear time-invariant distributed feedback systems perturbed by a small delay in the loop,IEEE Trans. Automat. Control,18, 479–484, 1973.

    Google Scholar 

  2. R. F. Curtain, Robust stabilization of normalized coprime factors: the infinite-dimensional case,Internat. J. Control,51, 1173–1190, 1990.

    Google Scholar 

  3. W. N. Dale and M. C. Smith, Stabilizability and existence of system representations for discrete-time time-varying systems, Proceedings of the 1991 American Control Conference, Boston, June 1991, pp. 2737–2742. Also inSIAM J. Control Optim.,31(6), 1538–1557, 1993.

  4. C. A. Desoer, R.-W. Liu, J. Murray, and R. Saeks, Feedback system design: the fractional representation approach to analysis and synthesis,IEEE Trans. Automat. Control,25, 399–412, 1980.

    Google Scholar 

  5. C. A. Desoer and M. Vidyasagar,Feedback Systems: Input-Output Properties, Academic Press, New York, 1975.

    Google Scholar 

  6. J. C. Doyle, T. T. Georgiou, and M. C. Smith, The parallel projection operators of a nonlinear feedback system,Systems Control Lett.,20, 79–85, 1993.

    Google Scholar 

  7. P. L. Duren,Theory of Hp Spaces, Academic Press, New York, 1970.

    Google Scholar 

  8. A. K. El-Sakkary, The gap metric: robustness of stabilization of feedback systems,IEEE Trans. Automat. Control,30, 240–247, 1985.

    Google Scholar 

  9. A. Feintuch, Graphs of time-varying linear systems and coprime factorizations,J. Math. Anal. AppL,163, 79–85, 1992.

    Google Scholar 

  10. A. Feintuch and R. Saeks,System Theory: A Hilbert Space Approach, Academic Press, New York, 1982.

    Google Scholar 

  11. C. Foias and A. E. Frazho,The Commutant Lifting Approach to Interpolation Problems, Birkhäuser, Boston, 1990.

    Google Scholar 

  12. C. Foias, T. T. Georgiou, and M. C. Smith, Geometric techniques for robust stabilization of linear time-varying systems,Proceedings of the 1990 IEEE Conference on Decision and Control, December 1990, pp. 2868–2873. Also inSIAM J. Control Optim.,31(6), 1518–1537, 1993.

  13. P. A. Fuhrmann, On the corona theorem and its application to spectral problems in Hilbert space,Trans. Amer. Math. Soc.,132, 55–66, 1968.

    Google Scholar 

  14. P. A. Fuhrmann, A functional calculus in Hilbert space based on operator-valued analytic functions,Israel J. Math.,6(3), 267–278, 1968.

    Google Scholar 

  15. J. B. Garnett,Bounded Analytic Functions, Academic Press, New York, 1981.

    Google Scholar 

  16. T. T. Georgiou, On the computation of the gap metric,Systems Control Lett.,11, 253–257, 1988.

    Google Scholar 

  17. T. T. Georgiou, Differential stability and robust control of nonlinear systems,Proceedings of the 1993 IEEE Conference on Decision and Control, December 1993, pp. 984–989, andMath. Control Signals Systems,6(4), 1993, to appear.

  18. T. T. Georgiou and M. C. Smith, w-Stability of feedback systems,Systems Control Lett.,13, 271–277, 1989.

    Google Scholar 

  19. T. T. Georgiou and M. C. Smith, Optimal robustness in the gap metric,IEEE Trans. Automat. Control,35, 673–686, 1990.

    Google Scholar 

  20. T. T. Georgiou and M. C. Smith,Topological Approaches to Robustness, Lecture Notes in Control and Information Sciences, Vol. 145, Springer-Verlag, Berlin pp. 222–241, 1993.

    Google Scholar 

  21. K. Glover and D. McFarlane, Robust stabilization of normalized coprime factor plant descriptions with H bounded uncertainty,IEEE Trans. Automat. Control,34, 821–830, 1989.

    Google Scholar 

  22. P. R. Halmos,A. Hilbert Space Problem Book, Springer-Verlag, New York, 1982.

    Google Scholar 

  23. H. Helson,Lectures on Invariant Subspaces, Academic Press, New York, 1964.

    Google Scholar 

  24. K. Hoffman,Banach Spaces of Analytic Functions, Prentice-Hall, Englewood Cliffs, NJ, 1962.

    Google Scholar 

  25. R. E. Kalman, P. L. Falb, and M. A. Arbib,Topics in Mathematical System Theory, McGraw-Hill, New York, 1969.

    Google Scholar 

  26. I. Kaplansky,Commutative Rings, University of Chicago Press, Chicago, 1974.

    Google Scholar 

  27. P. D. Lax, Translation invariant subspaces,Acta Math.,101, 163–178, 1959.

    Google Scholar 

  28. N. K. Nikol'skii,Treatise on the Shift Operator, Springer-Verlag, Berlin, 1986.

    Google Scholar 

  29. R. Ober and J. Sefton, Stability of linear systems and graphs linear systems,Systems Control Lett.,17(4) 265–280, 1991.

    Google Scholar 

  30. L. Qiu and E. J. Davison, Feedback stability under simultaneous gap metric uncertainties in plant and controller,Systems Control Lett.,18, 9–22, 1992.

    Google Scholar 

  31. M. C. Smith, On stabilization and the existence of coprime factorizations,IEEE Trans. Automat. Control,34, 1005–1007, 1989.

    Google Scholar 

  32. M. Vidyasagar, Input-output stability of a broad class of linear time-invariant multivariable feedback systems,SIAM J. Control,10, 203–209, 1972.

    Google Scholar 

  33. M. Vidyasagar, The graph metric for unstable plants and robustness estimates for feedback stability,IEEE Trans. Automat. Control,29, 403–418, 1984.

    Google Scholar 

  34. M. Vidyasagar,Control System Synthesis: A Factorization Approach, MIT Press, Cambridge, MA 1985.

    Google Scholar 

  35. M. Vidyasagar and H. Kimura, Robust controllers for uncertain linear multivariable systems,Automatica,22, 85–94, 1986.

    Google Scholar 

  36. M. Vidyasagar, H. Schneider, and B. Francis, Algebraic and topological aspects of feedback stabilization,IEEE Trans. Automat. Control,27, 880–894, 1982.

    Google Scholar 

  37. G. Vinnicombe, Structured uncertainty and the graph topology,IEEE Trans. Automat. Control,38(9), 1371–1383, 1993.

    Google Scholar 

  38. J. C. Willems,The Analysis of Feedback Systems, MIT Press, Cambridge, MA, 1971.

    Google Scholar 

  39. J. C. Willems, Paradigms and puzzles in the theory of dynamical systems,IEEE Trans. Automat. Control,36, 259–294, 1991.

    Google Scholar 

  40. G. Zames, Realizability conditions for nonlinear feedback systems,IEEE Trans. Circuit Theory,11, 186–194, 1964.

    Google Scholar 

  41. G. Zames, On the input-output stability of time-varying nonlinear feedback systems, part 1: conditions derived using concepts of loop gain, conicity, and positivity,IEEE Trans. Automat. Control,11, 228–238, 1966.

    Google Scholar 

  42. G. Zames and A. K. El-Sakkary, Unstable systems and feedback: the gap metric,Proceedings of the Allerton Conference, pp. 380–385, October 1980.

  43. S. Q. Zhu, Graph topology and gap topology for unstable systems,IEEE Trans. Automat. Control,34, 848–855, 1989.

    Google Scholar 

  44. S. Q. Zhu, M. L. J. Hautus, and C. Praagman, Sufficient conditions for robust BIBO stabilization: given by the gap metric,Systems Control Lett.,11, 53–59, 1988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part by the NSF and the AFOSR, U.S.A. and the Nuffield Foundation, U.K.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Georgiou, T.T., Smith, M.C. Graphs, causality, and stabilizability: Linear, shift-invariant systems on ℒ2[0, ∞). Math. Control Signal Systems 6, 195–223 (1993). https://doi.org/10.1007/BF01211620

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01211620

Key words

Navigation