Skip to main content
Log in

Primitive polynomial remainder sequences in elimination theory

  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract

Primitive polynomial remainder sequences (pprs) are more than a tool for computing gcd's; the content computations in the course of computing the pprs of two multivariate polynomialsf 1 andf 2 provide information on the common zeros off 1 andf 2. Because of this additional property, primitive polynomial remainder sequences can be used for solving systems of algebraic equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Brown, W. S.: On Euclid's algorithm and the computation of polynomial greatest common divisors. J. ACM18, 478–504 (1971)

    Google Scholar 

  2. Brown, W. S.: The subresultant PRS algorithm. ACM Transactions Math. Software4, 237–249 (1978)

    Google Scholar 

  3. Brown, W. S., Traub, J. F.: On Euclid's algorithm and the theory of subresultants. J. ACM18, 505–514 (1971)

    Google Scholar 

  4. Collins, G. E.: Subresultants and reduced polynomial remainder sequences. J. ACM14, 128–142 (1967)

    Google Scholar 

  5. Collins, G. E.: The calculation of multivariate polynomial resultants. J. ACM18, 515–532 (1971)

    Google Scholar 

  6. Gebauer, R., Kalkbrener, M., Wall, B., Winkler, F.: CASA: a computer algebra package for constructive algebraic geometry. In: Proc. ISSAC'91, pp. 403–410, Bonn, Germany (1991)

    Google Scholar 

  7. Gröbner, W.: Algebraische Geometrie I. Bibliographisches Institut Mannheim, 1968

  8. Gröbner, W.: Algebraische Geometrie II. Bibliographisches Institut Mannheim, 1970

  9. Hearn, A. C.: Non-modular computation of polynomial gcds using trial division. In: Proc. EUROSAM'79, pp. 227–239, Marseille, France (1979)

    Google Scholar 

  10. Kalkbrener, M.: Solving systems of bivariate algebraic equations by using primitive polynomial remainder sequences. In: Proc. ISSAC'90, p. 295, Tokyo, Japan (1990)

  11. Kalkbrener, M.: Three contributions to elimination theory. PhD thesis, Research Institute for Symbolic Computation, Univ. of Linz, Austria (1991)

    Google Scholar 

  12. Kalkbrener, M.: An algorithm for solving systems of algebraic equations in three variables. In: Algebraic, Geometrical, Categorical and Logical Calculi. Berlin, Heidelberg, New York: Springer 1994 (to appear)

    Google Scholar 

  13. Kalkbrener, M., Herfort, W., Seke, J., Hittmair, M. O.: Application of primitive polynomial remainder sequences to a problem of quantum optics. Sitzungsberichte der österr. Akademie der Wissenschaften, Abt. II 199, 91–101 (1990)

    Google Scholar 

  14. Lazard, D.: Ideal bases and primary decomposition: Case of two variables. J. Symb. Comp.1, 261–270 (1985)

    Google Scholar 

  15. Noonburg, V. W.: A neural network modeled by an adaptive Lotka-Volterra system. SIAM J. Appl. Math.49, 1779–1792 (1989)

    Google Scholar 

  16. Stoutemyer, D. R.: Polynomial remainder sequence greatest common divisors revisited. In: Proc. Second RIKEN Int. Symp. on Symbolic and Algebraic Computation by Computers, pp. 1–12. World Scientific: Singapore 1985

    Google Scholar 

  17. van der Waerden, B. L.: Algebra I. Berlin, Heidelberg, New York: Springer 1971

    Google Scholar 

  18. van der Waerden, B. L.: Algebra II. Berlin, Heidelberg, New York: Springer 1967

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work has been supported by the Austrian Fonds zur Förderung der wissenschaftlichen Forschung, project no. P6763, the Austrian Ministry of Science, project ESPRIT BRA 3125 “MEDLAR”, and the U.S. Army Research Office through the ACSyAM branch of the Mathematical Sciences Institute of Cornell University, Contract DAAL03-91-C-0027.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalkbrener, M. Primitive polynomial remainder sequences in elimination theory. AAECC 6, 65–79 (1995). https://doi.org/10.1007/BF01225644

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01225644

Keywords

Navigation