Abstract
Primitive polynomial remainder sequences (pprs) are more than a tool for computing gcd's; the content computations in the course of computing the pprs of two multivariate polynomialsf 1 andf 2 provide information on the common zeros off 1 andf 2. Because of this additional property, primitive polynomial remainder sequences can be used for solving systems of algebraic equations.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Brown, W. S.: On Euclid's algorithm and the computation of polynomial greatest common divisors. J. ACM18, 478–504 (1971)
Brown, W. S.: The subresultant PRS algorithm. ACM Transactions Math. Software4, 237–249 (1978)
Brown, W. S., Traub, J. F.: On Euclid's algorithm and the theory of subresultants. J. ACM18, 505–514 (1971)
Collins, G. E.: Subresultants and reduced polynomial remainder sequences. J. ACM14, 128–142 (1967)
Collins, G. E.: The calculation of multivariate polynomial resultants. J. ACM18, 515–532 (1971)
Gebauer, R., Kalkbrener, M., Wall, B., Winkler, F.: CASA: a computer algebra package for constructive algebraic geometry. In: Proc. ISSAC'91, pp. 403–410, Bonn, Germany (1991)
Gröbner, W.: Algebraische Geometrie I. Bibliographisches Institut Mannheim, 1968
Gröbner, W.: Algebraische Geometrie II. Bibliographisches Institut Mannheim, 1970
Hearn, A. C.: Non-modular computation of polynomial gcds using trial division. In: Proc. EUROSAM'79, pp. 227–239, Marseille, France (1979)
Kalkbrener, M.: Solving systems of bivariate algebraic equations by using primitive polynomial remainder sequences. In: Proc. ISSAC'90, p. 295, Tokyo, Japan (1990)
Kalkbrener, M.: Three contributions to elimination theory. PhD thesis, Research Institute for Symbolic Computation, Univ. of Linz, Austria (1991)
Kalkbrener, M.: An algorithm for solving systems of algebraic equations in three variables. In: Algebraic, Geometrical, Categorical and Logical Calculi. Berlin, Heidelberg, New York: Springer 1994 (to appear)
Kalkbrener, M., Herfort, W., Seke, J., Hittmair, M. O.: Application of primitive polynomial remainder sequences to a problem of quantum optics. Sitzungsberichte der österr. Akademie der Wissenschaften, Abt. II 199, 91–101 (1990)
Lazard, D.: Ideal bases and primary decomposition: Case of two variables. J. Symb. Comp.1, 261–270 (1985)
Noonburg, V. W.: A neural network modeled by an adaptive Lotka-Volterra system. SIAM J. Appl. Math.49, 1779–1792 (1989)
Stoutemyer, D. R.: Polynomial remainder sequence greatest common divisors revisited. In: Proc. Second RIKEN Int. Symp. on Symbolic and Algebraic Computation by Computers, pp. 1–12. World Scientific: Singapore 1985
van der Waerden, B. L.: Algebra I. Berlin, Heidelberg, New York: Springer 1971
van der Waerden, B. L.: Algebra II. Berlin, Heidelberg, New York: Springer 1967
Author information
Authors and Affiliations
Additional information
This work has been supported by the Austrian Fonds zur Förderung der wissenschaftlichen Forschung, project no. P6763, the Austrian Ministry of Science, project ESPRIT BRA 3125 “MEDLAR”, and the U.S. Army Research Office through the ACSyAM branch of the Mathematical Sciences Institute of Cornell University, Contract DAAL03-91-C-0027.
Rights and permissions
About this article
Cite this article
Kalkbrener, M. Primitive polynomial remainder sequences in elimination theory. AAECC 6, 65–79 (1995). https://doi.org/10.1007/BF01225644
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF01225644