Skip to main content
Log in

The critical line congruence for reconstruction from three images

  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract

Let three projected images of a set of lines in space be given. Then, in general, the relative positions of the lines can be reconstructed uniquely up to a collineation of space. Reconstruction fails to be unique for certain critical sets of lines. It is known that each critical set is parameterised by a Bordiga surface in ℙ4. A new proof of this result is given. In addition, it is shown that every Bordiga surface parameterises a critical set of lines. The proof involves an explicit construction of the second or spurious set of lines which projects down to the same three images as the veridical set of lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Bordiga, G.: La superficie del 6° ordine, con dieci rette, nello spazio R4; e le sue proiezioni nello spazio ordinario. Mem. Atti. Accad. Lincei, Series 4a (classe di scienze fisiche ecc.)4, 182–203 (1887)

    Google Scholar 

  2. Buchanan, T.: On the critical set for photogrammetric reconstruction using line tokens in ℙ3(ℂ). Geometriae Dedicata44, 223–232 (1992)

    Google Scholar 

  3. Buchanan, T.: Critical sets for 3D reconstruction using lines. In: Sandini, G. (ed.) Computer Vision — ECCV'92. Lecture Notes in Computer Science, Vol. 588. Berlin, Heidelberg, New York: Springer 1992

    Google Scholar 

  4. Faugeras, O. D., Maybank, S. J.: Motion from point matches: multiplicity of solutions. Int. J. Computer Vision4, 225–246 (1990)

    Google Scholar 

  5. Faugeras, O. D., Papadopoulo, T.: Disambiguating stereo matches with spatio-temporal surfaces. In: Mundy, J. L., Zisserman, A. (eds.) Geometric Invariance in Computer Vision. Cambridge MA, USA: MIT Press 1992

    Google Scholar 

  6. Hartshorne, R.: Algebraic Geometry. Springer Graduate Texts in Mathematics52. Berlin, Heidelberg, New York: Springer 1977

    Google Scholar 

  7. Kruppa, E.: Zur Ermittlung eines Objektes aus zwei Perspektiven mit innerer Orientierung. Sitz.-Ber. Akad. Wiss., Wien, math, naturw. Kl. Abt. IIa122, 1939–1948 (1913)

    Google Scholar 

  8. Leung, M. K., Liu, Y., Huang, T. S.: Estimating 3D vehicle motion in an outdoor scene from monocular and stereo image sequences. In: IEEE Workshop on Visual Motion, Nassau Inn, Princeton, New Jersey, 7–9 Oct. 1991, 62–68 (1991)

  9. Liu, Y.: Rigid Object Motion Estimation from Intensity Images using Straight Line Correspondences. Ph.D. Thesis, University of Illinois at Urbana-Champaign (1990)

  10. Liu, Y., Huang, T. S.: Estimation of rigid body motion using straight line correspondences: further results. In: Proc. 8th Int. Conference on Pattern Recognition, Paris 1986, Vol. 1, 306–309 (1986)

    Google Scholar 

  11. Liu, Y., Huang, T. S.: Estimation of rigid body motion using straight line correspondences. Computer Vision Graphics Image Processing43, 37–52 (1988)

    Google Scholar 

  12. Longuet-Higgins, H. C.: Multiple interpretations of a pair of images of a surface. Proc. R. Soc. Lond. Series A418, 1–15 (1988)

    Google Scholar 

  13. Luong, Q.-T.: Matrice Fondamentale et Autocalibration en Vision par Ordinateur. Ph.D. Thesis, L'Université de Paris-Sud, Centre d'Orsay (1992)

  14. Maybank, S. J.: The projective geometry of ambiguous surfaces. Philosophical Trans. R. Soc. Lond, Series A332 1–47 (1990)

    Google Scholar 

  15. Maybank, S. J.: Properties of essential matrices. Int. J. Imaging Systems Technology2, 380–384 (1990)

    Google Scholar 

  16. Maybank, S. J.: Theory of Reconstruction from Image Motion. Series in Information Sciences, Vol. 28. Berlin, Heidelberg, New York: Springer 1993

    Google Scholar 

  17. Maybank, S. J., Faugeras, O. D.: A theory of self-calibration of a moving camera. Int. J. Computer Vision8, 123–152 (1992)

    Google Scholar 

  18. Navab, N.: Visual motion of lines and cooperation between motion and stereo. Dissertation, University of Paris XI, Orsay, Paris, France (1993)

    Google Scholar 

  19. Navab, N., Faugeras, O. D., Viéville, T.: The critical sets of lines for camera displacement estimation: a mixed Euclidean-projective and constructive approach. In: Proc. 4th Int. Conf.on Computer Vision, ICCV93, 713–723, Berlin, Germany (11–14 May 1993)

  20. Room, T. G.: The Geometry of Determinantal Loci. Cambridge, UK: Cambridge University Press 1938

    Google Scholar 

  21. Semple, J. G.: On representations of line-congruences of the second and third orders. Proc. London Math. Soc. Series 2,35, 294–324 (1935)

    Google Scholar 

  22. Semple, J. G., Kneebone, G. T.: Algebraic Projective Geometry. Oxford: Oxford University Press 1953 (reprinted 1979)

    Google Scholar 

  23. Semple, J. G., Roth, L.: Introduction to Algebraic Geometry. Oxford: Clarendon Press 1949 (reprinted 1985)

    Google Scholar 

  24. Spetsakis, M. E., Aloimonos, J.: Structure from motion using line correspondences. Int. J. Computer Vision4, 171–183 (1990)

    Google Scholar 

  25. Wolf, P. R.: Elements of Photogrammetry. Second edition, Singapore: McGraw-Hill 1986

    Google Scholar 

  26. Wolfram, S. Mathematica: a system for doing mathematics by computer. Second edition, Redwood City, CA, USA: Addison Wesley 1991

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maybank, S.J. The critical line congruence for reconstruction from three images. AAECC 6, 89–113 (1995). https://doi.org/10.1007/BF01225646

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01225646

Keywords

Navigation