Abstract
New and known spaces of locally finite or polynomial exponential multivariate sequences and functions are constructed by means of substantial theorems from Commutative Algebra. They satisfy Ehrenpreis'fundamental principle and hence permit the solution of linear systems of partial differential or difference equations with constant coefficients. On the one hand this paper thus continues the author's work on multidimensional linear systems, on the other hand it generalizes and improves related work in approximation theory.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Birkhoff, G., Bartee, T. C.: Modem Applied Algebra, McGraw-Hill: New York 1970
Ben-Artzi, A., Ron, A.: Translates of exponential box splines and their related spaces, Trans. Am. Math. Soc. 309, 683–710 (1988)
De Boor, C., Ron, A.: Polynomial Ideals and Multivariate Splines, in Multivariate Approximation Theory V Birkhäuser: Basel 1990
—: On polynomial ideals of finite codimension with application to box spline theory, J. Math. Anal. Appl. 158:168–193 (1991)
De Boor, C., Ron, A., Shen, Z.: On ascertaining inductively the dimension of the joint kernel of certain commuting linear operators, preprint 1992
Bourbaki, N.: Commutative Algebra, Paris: Hermann 1972
—: Algèbre ch. 10 (Algèbre homologique), Masson, Paris 1980
Cohn, R. M.: Difference Algebra (Reprint 1980). Huntington, New York: R. E. Krieger 1979
Dahmen, W., Micchelli, C. A.: On the local linear independence of translates of a box spline. Studia Math. 82: 243–263 (1985)
—: On the solution of certain systems of partial difference equations and linear dependence of translates of box splines. Trans. Am. Math. Soc. 292: 305–320 (1985)
—: On Multivariate E-Splines, Adv. Math. 76: 33–93 (1989)
: Local Dimension of Piecewise Polynomial Spaces, Syzygies, and Solutions of Systems of Partial Differential Equations. Math. Nachr. 148: 117–136 (1990)
Dahmen, W., Dress, A., Micchelli, C. A.: On Multivariate Splines, Matroids and the Ext-Functor, preprint 1990. Adv. Appl. Math, (to appear)
Ehrenpreis, L.: Fourier Analysis in several Complex Variables, Interscience Publ. 1970
Fort, T: Finite Differences, Oxford: Clarendon Press 1948
Gabriel, P.: Dès Catégories Abèliennes, Bull. Soc. Math. France 90: 323–448 (1962)
Gröbner, W.: Algebraische Geometrie I, II, BI Verlag, Mannheim 1968/70
Jia, R.-Q., Riemenschneider, S. D., Shen, Z.: Multivariate Splines and Dimension of Kernels of Linear Operators, Num. Math., Vol. 94, Birkhäuser: Basel 1990
—: Dimension of Kernels of Linear Operators, Am. J. Math. 113:157–184 (1991)
—: Solvability of Systems of Linear Operator Equations. Proc. Am. Math. Soc. 120:815–824 (1994)
Jordan, C.: Calculus of Finite Differences, Reprint of the second edition, Chelsea 1960
Kunz, E.: Einführung in die kommutative Algebra und die algebraische Geometrie, Vieweg 1980
Malgrange, B.: Systèmes différentiels à coefficients constants, in Sèm. Bourbaki Vol. 1962/63, 246.01–246.11
Matlis, E.: Injective Modules over Noetherian Rings, Pac. J. Math. 8: 511–528 (1958)
Matsumura, H.: Commutative Ring Theory, Cambridge University Press 1986
Nagata, M.: Local Rings, Interscience Publishers 1962
Oberst, U.: Anwendungen des Chinesischen Restsatzes, Expo. Math. 3: 97–148 (1985)
—: Multidimensional Constant Linear Systems, Acta Appl. Math. 20:1–175 (1990)
-: Finite Dimensional Systems of Partial Differential or Difference Equations. Adv. Appl. Math, (to appear)
—: On the Minimal Number of Trajectories Determining a Multidimensional System, Math. Control Signals Systems 6: 264–288 (1993)
Palamodov, V. P.: Linear Differential Operators with Constant Coefficients, Berlin, Heidelberg Yew York, Springer 1970
Pauer, F.: Gröbner Basen und ihre Anwendungen, In: Überblicke Mathematik, Wiebaden: Vieweg 1990
Schwartz, L.: Thèorie des Distributions, Tome 1, Paris: Hermann 1957
Serre, J.-P.: Algèbre Locale. Multiplicités (Cours 1957/58, réd. par P. Gabriel), 2. Ed., Lect. Notes in Math. 11. Berlin Heidelberg New York: Springer 1965
—: Groupes alge'briques et corps de classes, Paris: Hermann 1959
Shen, Z.: Dimension of Certain Kernel Spaces of Linear Operators, Proc. Am. Math. Soc. 112: 381–390 (1991)
Willems, J. C.: From Time Series to Linear Systems, Part I, Automatica 22: 561–580 (1986)
Zerz, E., Oberst, U.: The Canonical Cauchy Problem for Linear Systems of Partial Difference Equations with Constant Coefficients over the Complete Integral Lattice ℤr. Acta Appl. Math. 31: 249–273 (1993)
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Oberst, U. Variations on the fundamental principle for linear systems of partial differential and difference equations with constant coefficients. AAECC 6, 211–243 (1995). https://doi.org/10.1007/BF01235717
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF01235717
Keywords
- Fundamental principle
- Injective cogenerator
- Multidimensional system
- Multivariate spline
- Locally finite sequence
- Polynomial exponential function