Skip to main content
Log in

A Gaussian fluid model

  • Published:
Queueing Systems Aims and scope Submit manuscript

Abstract

A fluid model with infinite buffer is considered. The total net rate is a stationary Gaussian process with mean −c and covariance functionR(t). Let Ψ(x) be the probability that in steady state conditions the buffer content exceedsx. Under the condition ∫ 0 t 2 ¦R(t)¦dt< we show that Ψ admits a logarithmic linear upper bound, i.e. Ψ(x)≤Cexp[−γx]+o(exp[−γx]) and find γ and C. Special cases are worked out whenR is as in a Gauss-Markov or AR-Gaussian process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Anick, D. Mitra and M.M. Sondhi, Stochastic theory of a data-handling system with multiple sources, Bell Syst. Tech. J. 61 (1982) 1871–1894.

    Google Scholar 

  2. P.H. Bézandry and X. Fernique, Sur la propriété de la limite centrale dansD[0,1], Ann. Inst. Henri Poincaré 28 (1992) 31–46.

    Google Scholar 

  3. M. Bloznelis and V. Paulauskas, On the central limit theorem inD[0,1], Stat. Prob. Lett. 17 (1993) 105–111.

    Google Scholar 

  4. A.A. Borovkov,Stochastic Processes in Queueing Theory (Springer, New York, 1976).

    Google Scholar 

  5. A.A. Borovkov,Asymptotic Methods in Queueing Theory (Wiley, Chichester, 1984).

    Google Scholar 

  6. K.Debicki, Gaussowski Model Wypełmienia Bufora, M.Sc. Thesis. Mathematical Institute, Wrocław University (1994).

  7. P.W. Glynn and W. Whitt, Logarithmic asymptotics for steady-state tail probabilities in a single-server queue,Studies in Applied Probability, Papers in honour of Lajos Takács, eds. J. Galambos and J. Gani (Applied Probability Trust, Sheffield, England, 1994) pp. 131–156.

    Google Scholar 

  8. I. Karatzas and S.E. Shreve,Brownian Motion and Stochastic Calculus (Springer, New York, 1988).

    Google Scholar 

  9. M.J. Hahn, Central limit theorems inD[0,1], Z. Wahrscheinlichkeitstheorie verw. Gebiete 44 (1978) 89–101.

    Google Scholar 

  10. J.M. Harrison,Brownian Motion and Stochastic Flow Systems (Wiley, New York, 1985).

    Google Scholar 

  11. C. Knessl and J.A. Morrison, Heavy traffic analysis of a data-handling system with many sources, SIAM J. Appl. Math. 51 (1991) 187–213.

    Google Scholar 

  12. D.L. Iglehart, Limit diffusion approximations for the many server queue and the repairman problem, J. Appl. Prob. 2 (1965) 429–441.

    Google Scholar 

  13. B. Kopocinski,Zarys Teorii Odnowy i Niezawodności (PWN, Warszawa, 1973).

    Google Scholar 

  14. G.A. Korn,Mathematical Handbook for Scientists and Engineers (McGraw-Hill, New York, 1961).

    Google Scholar 

  15. V. Kulkarni and T. Rolski, Fluid model driven by an Ornstein-Uhlenbeck process, Prob. Eng. Inf. Sci. 8 (1994) 403–417.

    Google Scholar 

  16. V. Kulkarni and T. Rolski, Fluid model driven by a multidimensional Ornstein-Uhlenbeck process, Technical Report No. UNC/OR/TR/93-7 (1993).

  17. I. Norros, A storage model with self-similar input, Queueing Systems 16 (1994) 387–396.

    Google Scholar 

  18. N.U. Prabhu,Stochastic Storage Processes (Springer, New York, 1980).

    Google Scholar 

  19. A. Simonian, Stationary analysis of a fluid queue with input rate varying as an Ornstein-Uhlenbeck process, SIAM J. Appl. Math. 51 (1991) 823–842.

    Google Scholar 

  20. A. Simonian and J. Virtamo, Transient and stationary distributions for fluid queues and input processes with a density, SIAM J. Appl. Math. 51 (1991) 1731–1739.

    Google Scholar 

  21. W. Szczotka, Central limit theorem inD[0, ∞) for breakdown processes, Prob. Math. Stat. 1 (1980) 49–57.

    Google Scholar 

  22. H. Thorisson, The coupling of regenerative processes, Adv. Appl. Prob. 15 (1983) 531–561.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Debicki, K., Rolski, T. A Gaussian fluid model. Queueing Syst 20, 433–452 (1995). https://doi.org/10.1007/BF01245328

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01245328

Keywords

Navigation