Skip to main content
Log in

Unique reconstruction of piecewise-smooth images by minimizing strictly convex nonquadratic functionals

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

We propose the minimization of a nonquadratic functional or, equivalently, a nonlinear diffusion model to smooth noisy image functionsg:ΩR nR while preserving significant transitions of the data. The model is chosen such that important properties of the conventional quadratic-functional approach still hold: (1) existence of a unique solution continuously depending on the datag and (2) stability of approximations using the standard finite-element method. Relations with other global approaches for the segmentation of image data are discussed. Numerical experiments with real data illustrate this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Ambrosio and V.M. Tortorelli, “Approximation of functionals depending on jumps by elliptic functionals viaΓ-convergence,”Comm. Pure Appl. Math., vol. 43, pp. 999–1036, 1990.

    Google Scholar 

  2. A. Blake, A. Zisserman,Visual Reconstruction, MIT Press: Cambridge, MA, 1987.

    Google Scholar 

  3. F.E. Browder, “Existence theorems for nonlinear partial differential equations, part I,” inGlobal Analysis, Proceedings of Symposia in Pure Mathematics, vol. XVI, American Mathematical Society: Providence, RI, 1970, pp. 1–60.

    Google Scholar 

  4. G. Demoment, “Image reconstruction and restoration: overview of common estimation structures and problems,”IEEE Trans. Acoust. Speech, Signal Process., vol. ASSP-37, pp. 2024–2036, 1989.

    Google Scholar 

  5. D. Geiger and A. Yuille, “A common framework for image segmentation,”Int. J. Comput. Vis., vol. 6, pp. 227–243, 1991.

    Google Scholar 

  6. S. Geman and D. Geman, “Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images,”IEEE Trans. Patt. Anal. Mach. Intell. vol. PAMI-6, pp. 721–741, 1984.

    Google Scholar 

  7. W. Hackbusch,Multi-Grid Methods and Applications Springer-Verlag: Berlin, 1985.

    Google Scholar 

  8. B.K.P. Horn and B.G. Schunck, “Determining optical flow,”Artif. Intell., vol. 17, pp. 185–203, 1981.

    Google Scholar 

  9. J. Hutchinson, C. Koch, J. Luo, and C. Mead, “Computing motion using analog and binary resistive networks,”IEEE Comput. Mag., March 1988, pp. 52–63.

  10. K. Ikeuchi and B.K.P. Horn, “Numerical shape from shading and occluding boundaries,”Artif. Intell. vol. 17, pp. 141–185, 1981.

    Google Scholar 

  11. M.A. Krasnoselskii,Topological Methods in the Theory of Nonlinear Integral Equations, Pergamon Press: Oxford, England, 1964.

    Google Scholar 

  12. S.Z. Li, “Invariant surface segmentation through energy minimization with discontinuities,”Int. J. Comput. Vis., vol. 5, pp. 161–194, 1990.

    Google Scholar 

  13. P.L. Lions, L. Alvarez, and J.M. Morel, “Image selective smoothing and edge detection by non-linear diffusion (II),”SIAM J. Numer Anal. vol. 29, pp. 845–866, 1992.

    Google Scholar 

  14. R. March, “Visual reconstruction with discontinuities using variational methods,”Image Vis. Comput., vol. 10, pp. 30–38, 1992.

    Google Scholar 

  15. J. Marroquin, S. Mitter, and T. Poggio, “Probabilistic solution of ill-posed problems in computational vision,”J. Amer. Statist. Assoc., vol. 82, pp. 76–89, 1987.

    Google Scholar 

  16. D. Mumford and J. Shah, “Optimal approximations by piecewise smooth functions and associated variational problems,”Comm. Pure Appl. Math., vol. 42, pp. 577–685, 1989.

    Google Scholar 

  17. D.W. Murray and B.F. Buxton, “Scene segmentation from visual motion using global optimization,”IEEE Trans. Patt. Anal. Mach. Intell., vol. PAMI-9, pp. 220–228, 1987.

    Google Scholar 

  18. N. Nordström, “Biased anisotropic diffusion—a unified regularization and diffusion approach to edge detection,” inECCV'90, Lecture Notes in Computer Science, vol. 427, Springer-Verlag: Berlin, 1990, pp. 18–27; also inImage Vis. Comput., vol. 8, pp. 318–327, 1990.

    Google Scholar 

  19. J.M. Ortega, W.C. Rheinboldt,Iterative Solution of Nonlinear Equations in Several Variables Academic Press: New York, 1970.

    Google Scholar 

  20. P. Perona and J. Malik, “Scale-space and edge detection using anisotropic diffusion,” inProc. IEEE Workshop on Computer Vision, Miami, FL, 1987, pp. 16–27; also inIEEE Trans. Patt. Anal. Mach. Intell., vol. PAMI-12, pp. 629–639, 1990.

  21. T. Poggio, V. Torre, and C. Koch,“Computational vision and regularization theory,”Nature, vol. 317, pp. 314–319, 1985.

    Google Scholar 

  22. T. Poggio and C. Koch, “Ill-posed problems in early vision: from computational theory to analogue networks,”Proc. Roy. Soc. London B, vol. 226, pp. 303–323, 1985.

    Google Scholar 

  23. C. Schnörr and B. Neumann, “Ein Ansatz zur effizienten und eindeutigen Rekonstruktion stückweise glatter Funktionen,” in14. DAGM-Symposium Mustererkennung 1992, Springer-Verlag: Berlin, pp. 411–416, 1992.

    Google Scholar 

  24. D. Terzopoulos, “Multilevel computational processes for visual surface reconstruction,”Comp. Vis., Graph., Image Process vol. 24, pp. 52–96, 1983.

    Google Scholar 

  25. D. Terzopoulos, “Regularization of inverse visual problems involving discontinuities,”IEEE Trans. Patt. Anal. Mach. Intell., vol. PAMI-8, pp. 413–424, 1986.

    Google Scholar 

  26. D. Terzopoulos, “The computation of visible-surface representations,”IEEE Trans. Patt. Anal. Mach. Intell., vol. PAMI-10, pp. 417–438, 1988.

    Google Scholar 

  27. A.N. Tikhonov and V.Y. Arsenin,Solutions of Ill-Posed Problems, Wiley: New York, 1977.

    Google Scholar 

  28. M. Vainberg,Variational Method and Method of Monotone Operators in the Theory of Nonlinear Equations, Wiley: New York, 1973.

    Google Scholar 

  29. E. Zeidler,Nonlinear Functional Analysis and its Applications II, Springer-Verlag: Berlin, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by the ESPRIT project SUBSYM.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schnörr, C. Unique reconstruction of piecewise-smooth images by minimizing strictly convex nonquadratic functionals. J Math Imaging Vis 4, 189–198 (1994). https://doi.org/10.1007/BF01249896

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01249896

Key words

Navigation