Skip to main content
Log in

Inferring 3D structure from image motion: The constraint of Poinsot motion

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

Monocular observers perceive as three-dimensional (3D) many displays that depict three points rotating rigidly in space but rotating about an axis that is itself tumbling. No theory of structure from motion currently available can account for this ability. We propose a formal theory for this ability based on the constraint of Poinsot motion, i.e., rigid motion with constant angular momentum. In particular, we prove that three (or more) views of three (or more) points are sufficient to decide if the motion of the points conserves angular momentum and, if it does, to compute a unique 3D interpretation. Our proof relies on an upper semicontinuity theorem for finite morphisms of algebraic varieties. We discuss some psychophysical implications of the theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Aloimonos and A. Bandyopadhyay, “Perception of structure from motion: Lower bound results,” Tech. Report 158, Department of Computer Science, University of Rochester, Rochester, NY, 1985.

    Google Scholar 

  2. B.M. Bennett and D.D. Hoffman, “The computation of structure from fixed-axis motion: Nonrigid structures,”Biol. Cybernet., vol. 51, 1985, pp. 293–300.

    Google Scholar 

  3. E.H. Carlton and R.N. Shepard, “Psychologically simple motions as geodesic paths: I. Asymmetric objects,”J. Math. Psychol., vol. 34, 1990, pp. 127–188.

    Google Scholar 

  4. E.H. Carlton and R.N. Shepard, “Psychologically simple motions as geodesic paths: II. Symmetric objects,”J. Math. Psych., vol. 34, 1990. pp. 189–228.

    Google Scholar 

  5. O.D. Faugeras and S. Maybank, “Motion from point matches: Multiplicity of solutions,”Internat. J. Comput. Vis., vol. 4, 1990, pp. 225–246.

    Google Scholar 

  6. N. Grzywacz and E. Hildreth, “Incremental rigidity scheme for recovering structure from motion: Position-based versus velocity-based formulations,”J. Opt. Soc. Am. A, vol. 4, 1987, pp. 503–518.

    Google Scholar 

  7. D.D. Hoffman and B.M. Bennett, “Inferring the relative three-dimensional positions of two moving points,”J. Opt. Soc. Am. A, vol. 2, 1985, pp. 350–353.

    Google Scholar 

  8. D.D. Hoffman and B.M. Bennett, “The computation of structure from fixed-axis motion: Rigid structures,”Biol. Cybernet., vol. 54, 1986, pp. 71–83.

    Google Scholar 

  9. D.D. Hoffman and B.E. Flinchbaugh, “The interpretation of biological motion,”Biol. Cybernet., vol. 42, 1982, pp. 197–204.

    Google Scholar 

  10. T. Huang and C. Lee, “Motion and structure from orthographic projections,”IEEE Trans. Patt. Anal. Mach. Intell., vol. 11, 1989, pp. 536–540.

    Google Scholar 

  11. J. Koenderink and A. van Doorn, “Depth and shape from differential perspective in the presence of bending deformations,”J. Opt. Soc. Am. A, vol. 3, 1986, pp. 242–249.

    Google Scholar 

  12. J. Koenderink and A. van Doorn, “Invariant properties of the motion parallax field due to the movement of rigid bodies relative to an observer,”Opt. Acta, vol. 22, 1975, pp. 773–791.

    Google Scholar 

  13. E. Kruppa, “Zur Ermittlung eines Objektes aus zwei Perspektiven mit innerer Orientierung,”Akad. Wiss. Wien Math. Naturwiss. Kl. Sitzungsberichte, vol. 122, 1913, pp. 1939–1948.

    Google Scholar 

  14. H.C. Longuet-Higgins, “A computer algorithm for reconstructing a scene from two perspective projections,”Nature, vol. 293, 1981, pp. 133–135.

    Google Scholar 

  15. S. Ullman,The Interpretation of Visual Motion, MIT Press, Cambridge, MA, 1979.

    Google Scholar 

  16. A. Waxman and K. Wohn, “Contour evolution, neighborhood deformation, and image flow: Textured surfaces in motion,” inImage Understanding 1985–1986, W. Richards and S. Ullman, eds., Ablex, Norwood, NJ, 1987, pp. 72–98.

    Google Scholar 

  17. J.A. Webb and J.K. Aggarwal, “Structure from motion of rigid and jointed objects,”Artif. Intell., vol. 19, 1982, pp. 107–130.

    Google Scholar 

  18. M.L. Braunstein, D.D. Hoffman, and F.E. Pollick, “Discriminating rigid from nonrigid motion: Minimum points and views,”Percept. Psychophys., vol. 47, 1990, pp. 205–214.

    Google Scholar 

  19. M. Braunstein, D. Hoffman, L. Shapiro, G. Andersen, and B. Bennett, “Minimum points and views for the recovery of three-dimensional structure,”J. Exp. Psychol. Hum. Percept., vol. 13, 1987, pp. 335–343.

    Google Scholar 

  20. J.J. Gibson and E.J. Gibson, “Continuous perspective transformations and the perception of rigid motion,”J. Exp. Psychol., vol. 54, 1957, pp. 129–138.

    Google Scholar 

  21. B. Green, “Figure coherence in the kinetic depth effect,”J. Exp. Psychol., vol. 62, 1961, pp. 272–282.

    Google Scholar 

  22. J.S. Lappin, J.F. Donner, and B. Kottas, “Minimal conditions for the visual detection of structure and motion in three dimensions,”Science, vol. 209, 1980, pp. 717–719.

    Google Scholar 

  23. V.S. Ramachandran, S. Cobb, and D. Rogers-Ramachandran, “Perception of 3-D structure from motion: The role of velocity gradients and segmentation boundaries,”Percept. Psychophys., vol. 44, 1988, pp. 390–393.

    Google Scholar 

  24. J.T. Todd, R.A. Akerstrom, F.D. Reichel, and W. Hayes, “Apparent rotation in three-dimensional space: Effects of temporal, spatial, and structural factors,”Percept. Psychophys., vol. 43, 1988, pp. 179–188.

    Google Scholar 

  25. H. Wallach and D. O'Connell, “The kinetic depth effect,”J. Exp. Psychol., vol. 45, 1953, pp. 205–217.

    Google Scholar 

  26. H. Goldstein,Classical Mechanics, Addison-Wesley, Reading, MA, 1980.

    Google Scholar 

  27. K. Symon,Mechanics, Addison-Wesley, Reading, MA, 1971.

    Google Scholar 

  28. L. Poinsot, “Theorie nouvelle de la rotation des corps,”J. Liouville, vol. 16, 1851.

  29. A. Gray,A Treatise on Gyrostatics and Rotational Motion, Dover, New York, 1959.

    Google Scholar 

  30. W.D. Macmillan,Theoretical Mechanics: Dynamics of Rigid Bodies, Dover, New York, 1960.

    Google Scholar 

  31. E.J. Routh,Dynamics of a System of Rigid Bodies: Advanced Part, Macmillan, London, 1892.

    Google Scholar 

  32. A.G. Webster,The Dynamics of Particles and of Rigid, Elastic, and Fluid Bodies, Stechert-Hafner, New York, 1920.

    Google Scholar 

  33. R. Hartshorne,Algebraic Geometry, Springer-Verlag, New York, 1977.

    Google Scholar 

  34. A. Grothendieck, “Etude cohomologique des faisceaux cohérents,”Publ. Math. IHES, vol. 11, 1961; vol. 17, 1963.

  35. W. Fulton,Algebraic Curves: An Introduction to Algebraic Geometry, Addison-Wesley, New York, 1989.

    Google Scholar 

  36. B.M. Bennett, D.D. Hoffman, and C. Prakash,Observer Mechanics, Academic Press, New York, 1989.

    Google Scholar 

  37. B.M. Benett, D.D. Hoffman, and C. Prakash, “Unity of perception,”Cognition, vol. 38, 1991, pp. 295–334.

    Google Scholar 

  38. D.L. Gilden and D.R. Proffitt, “Understanding collision dynamics,”J. Exp. Psychol. Hum. Percept., vol. 15, 1989, pp. 372–383.

    Google Scholar 

  39. M.K. Kaiser and D.R. Proffitt, “The development of sensitivity to causally relevant dynamic information,”Child Dev., vol. 55, 1984, pp. 1614–1624.

    Google Scholar 

  40. M.K. Kaiser and D.R. Proffitt, “Observers' sensitivity to dynamic anomalies in collisions,”Percept. Psychophys., vol. 42, 1987, pp. 275–280.

    Google Scholar 

  41. J.T. Todd and W.H. Warren, “Visual perception of relative mass in dynamic events,”Perception, vol. 11, 1982, pp. 325–335.

    Google Scholar 

  42. M. McBeath and R.N. Shepard, “Apparent motion between shapes differing in location and orientation: A window technique for estimating path curvature,”Percept. Psychophys., vol. 46, 1989, 333–337.

    Google Scholar 

  43. D.R. Proffitt, D. Gilden, M.K. Kaiser, and S. Whelan, “The effect of configural orientation on perceived trajectory in apparent motion,”Percept. Psychophys., vol. 45, 1988, pp. 465–474.

    Google Scholar 

  44. M.A. Just and P.A. Carpenter, “Cognitive coordinate systems: Accounts of mental rotation and individual differences in spatial abilities,”Psychol. Rev., vol. 92, 1985, pp. 137–192.

    Google Scholar 

  45. L.M. Parsons, “Imagined spatial transformations of one's hand and feet,”Cog. Psychol., vol. 19, 1987, pp. 178–241.

    Google Scholar 

  46. L.M. Parsons, “Imagined spatial transformations of one's body,”J. Exp. Psychol. Gen., vol. 116, 1987, pp. 172–191.

    Google Scholar 

  47. R.N. Shepard,Mental Images and Their Transformations, MIT Press, Cambridge, MA, 1982.

    Google Scholar 

  48. J. Bochnak and M. Coste, M. Roy,Géométrie algébrique réele, Springer-Verlag, New York, 1987.

    Google Scholar 

  49. A. Seidenberg, “A new decision method for elementary algebra,”Ann. Math., vol. 60, 1954, pp. 365–374.

    Google Scholar 

  50. S. Akbulut and H. King,Topology of Real Algebraic Sets, in press.

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by National Science Foundation grants IRI-8700924 and DIR-9014278 and by Office of Naval Research contract N00014-88-K-0354.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bennett, B.M., Hoffman, D.D., Kim, J.S. et al. Inferring 3D structure from image motion: The constraint of Poinsot motion. J Math Imaging Vis 3, 143–166 (1993). https://doi.org/10.1007/BF01250527

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01250527

Key words

Navigation