Skip to main content
Log in

Contact analysis and verification in a 2D environment with uncertainties

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

This contribution presents results of a research project concerned with the planning and execution of motions in uncertain environments. In particular, the problem of a moving convex polygon within an uncertain two-dimensional environment has been investigated. The essential sub-problem of how to analyse unexpected contacts is treated. Using a set-oriented model of the uncertainties, the motion possibilities of the polygon is investigated for the different contact types. Also based on the model of the uncertainties, the potential locations of the geometric elements are constructed and intersected, giving us the contact hypotheses. With the help of exploratory motions, an attempt is made to decide between ambiguous hypotheses. The question of which exploratory motions are useful for the different contact types is also investigated. After an exploratory motion has been executed, its results must be evaluated with respect to the validity of the hypotheses. The system has been implemented and is also described in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brady, J. Michael, Problems of robotics, Report No. OUEL 1746/88, University of Oxford (1988)

  2. Brost, Randy C., Automatic grasp planning in the presence of uncertainty, IJRR7(1), 3–17 (1988).

    Google Scholar 

  3. Desai, Rajiv S., and Volz, Richard A., Contact formations — Toward a new approach to local motion in mechanical assembly, Tech. Report, Univ. of Michigan at Ann Arbor, Dept. of Elect. Eng. and Comp. Sci. (1986).

  4. Donald, Bruce R.,Error Detection and Recovery in Robotics, Springer-Verlag, Berlin (1989).

    Google Scholar 

  5. Dufay, Bruno and Laugier, Christian, Geometrical reasoning in automatic grasping and contact analysis.Adv. in CAD/CAM, IFIP (1983).

  6. Dufay, Bruno and Latombe, Jean-Claude, An approach to automatic robot programming based on inductive learning,IJRR 3(4), 3–20 (1984).

    Google Scholar 

  7. Erdmann, Michael A., On motion planning with uncertainty, MIT Report No. AI-TR-810 (MS Thesis) (1984).

  8. Erdmann, Michael A. and Mason, Matthew T., An exploration of sensorless manipulation,IEEE JRA 4(4), 369–379 (1988).

    Google Scholar 

  9. Gini, M. and Gini, G., Recovering from failures: A new challenge for industrial robotics. pp. 579–588 in: M. Brady, L.A. Gerhardt, and H.F. Davidson (eds),Robotics and Artificial Intelligence, Proc. NATO Adv. Studies Inst. on robotics and AI Castelvecchio Pascoli (Barga), Italy. (1983).

  10. Henderson, T. and Shilcrat, E., Logical sensor systems.J. Robotic Systems 1(2), 169–193 (1984).

    Google Scholar 

  11. Hörmann, K.,Ein Verfahren zur Planung kollisionsfreier Bahnen für Industrieroboter, Springer-Verlag, Berlin (1988).

    Google Scholar 

  12. Hörmann, K. and Werling, V., Ein Verfahren zur Planung von Feinbewegungen für Montageoperationen,Robotersysteme 5, 17–28 (1989).

    Google Scholar 

  13. Hörmann, A. and Hörmann, K., Planung kollisionsfreier Greifoperationen: Analyse der Objektgeometrie,Robotersysteme 6, 39–50 (1990).

    Google Scholar 

  14. Hörmann, K. and Werling, V., Planung kollisionsfreier Greifoperationen: Kollisionsfreie Bahnplanung für Greifer und Manipulator,Robotersysteme,6, 119–125 (1990).

    Google Scholar 

  15. Hübner, Thomas, Modellbasierte Situationsanalyse als Teil einer fehlertoleranten Bewegungsausführung von Robotern, Diplomarbeit, Universität Karlsruhe, Institut für Prozeβrechentechnik und Robotik (1989).

    Google Scholar 

  16. Kapral, Gerald, Ein Verfahren zur Planung von kollisionsfreien Feinbewegungen bei Montageoperationen für allgemeine Bewegungen. Diplomarbeit, Universität Karlsruhe, Institut für Prozeβrechentechnik und Robotik (1989).

    Google Scholar 

  17. Koutsou, Anastasia, Planning motion in contact to achieve parts mating, PhD. Thesis, Univ. of Edinburgh (1986).

  18. Laugier, C. and Théveneau, P., Planning sensor-based motions for part-mating using geometric reasoning techniques,Proc. ECAI 1986, pp 494–506.

  19. Laugier, Christian, Planning fine motion strategies by reasoning in the contact space.Proc. IEEE ICRA 1989, pp. 653–659.

  20. Lozano-Pérez, Tomás, Spatial planning: A configuration space approach.IEEE Trans. Comput. C-32(2), 108–120 (1983).

    Google Scholar 

  21. Lozano-Pérez, Tomás, Mason, Matthew T. and Taylor, Russell H., Automatic synthesis of finemotion strategies for robots,IJRR 3(1), 3–24 (1984).

    Google Scholar 

  22. Malcolm, C.A. and Fothergill, A.P., Some architectural implications of the use of sensors, in: U. Rembold, K. Hörmann (eds)Languages for Sensor-Based Control in Robotics NATO ASI Series, vol. F29. Springer-Verlag, New York (1987).

    Google Scholar 

  23. Mason, Matthew T., Manipulator grasping and pushing operations, MIT Tech. Report No. AI-TR-690 (PhD Thesis) (1982).

  24. Mason, Matthew T., Mechanics and planning of manipulator pushing operations.IJRR 5(3), 53–71 (1986).

    Google Scholar 

  25. Nagel, Susanne, Korrekturbewegungen als Ergebnis einer Situationsanalyse im Falle ungeplanter Kollisionen, Diplomarbeit, Universität Karlsruhe, Institut für Prozeβrechentechnik und Robotik (1990).

  26. Nitzan, D., Barrouil, C., Cheeseman, P. and Smith, R., Use of sensors in robot systems.Proc. IEEE ICRA 1983, pp. 123–132.

  27. Peshkin, Michael, A. and Sanderson, Arthur C., The motion of a pushed, sliding workpiece,IEEE JRA 4(6), 569–598 (1988).

    Google Scholar 

  28. Pingle, K., Paul, R. and Bolles, R., Programmable assembly, three short examples, film (1974).

  29. Reuleaux, Franz,Grundzüge einer Theorie des Maschinenbaus. Vieweg, Braunschweig (1875). English translation:The Kinematics of Machinery. Dover, New York (1963).

    Google Scholar 

  30. Spreng, Michael, Situation analysis exploiting feasibility constraints in uncertain environments.Proc. Fifth Int. Conf. on Advanced Robotics, Pisa, Italy 1991 pp. 1690–1693.

  31. Théveneau, Pascal, Utilisation du raisonnement géometrique pour la planification en robotique d'assemblage: le système PAMELA, Thèse, Institut National Polytechnique de Grenoble (1988).

  32. Xiao, Jing and Volz, Richard A., Design and motion constraints of part-mating planning in the presence of uncertainties,Proc. IEEE ICRA 1988, pp. 1260–1268.

  33. Xiao, Jing and Volz, Richard A., On replanning for assembly tasks using robots in the presence of uncertainties,Proc. IEEE ICRA 1989, pp. 638–645.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hörmann, K., Hübner, T. & Spreng, M. Contact analysis and verification in a 2D environment with uncertainties. J Intell Robot Syst 7, 175–193 (1993). https://doi.org/10.1007/BF01257818

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01257818

Key words

Navigation