Skip to main content
Log in

On rotation representations in computational robot kinematics

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

Various methods of implementing forward and inverse kinematics of six-axes industrial robots are analyzed in this paper from the viewpoint of numerical conditioning and convergence speed both close to a solution and away from it. Computational complexities are derived in terms of the number of arithmetic operations and comparisons are made by observing the actual CPU time consumption. The formulations presented make use of different sets of invariants describing the orientation of the gripper. It is shown that, in inverse kinematics, there is a tradeoff between numerical stability and computational speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tandirci, M., Angeles, J. and Darcovich, J., The role of rotation representations in computational robot kinematics,Proc. 1992 IEEE Int. Conf. Robotics and Automation, Nice, May 12–14, 1992, pp. 344–349.

  2. Pieper, D. L.,The kinematics of Manipulators Under Computer Control, PhD Thesis, Stanford University, 1968.

  3. Takano, M., A new effective solution to inverse kinematics problem of a robot with any type of configuration,J. Faculty of Engineering, The University of Tokyo, Vol.B(2), 107–135 (1985).

    Google Scholar 

  4. Mavroidis, C. and Roth, B., Manipulators with simple inverse kinematics,Proc. Ninth CISMIFToMM Symposium on Theory and Practice of Robots and Manipulators — Romansy 9, Udine, 1–4 September 1992.

  5. Lee, H.-Y. and Liang, C.-G., Displacement analysis of the general spatial 7-link 7R mechanism,Mechanism and Machine Theory 23(3), 219–226 (1988).

    Google Scholar 

  6. Raghavan, M. and Roth, B., Kinematic analysis of the 6R manipulator of general geometry, in H. Miura and S. Arimoto (eds),Proc. 5th Int. Sympos. Rob. Res., MIT Press Cambridge, Mass, 1990, pp. 263–269.

    Google Scholar 

  7. Angeles, J., On the numerical solution of the inverse kinematics problem,Int. J. Robotics Res. 2 21–36 (1985).

    Google Scholar 

  8. Goldenberg, A. A., Benhabib, B. and Fenton, R. G., A complete generalized solutions to the inverse kinematics of robots,IEEE J. Robotics Automat. RA-1 14–20 (1985).

    Google Scholar 

  9. Tsai, L. W. and Morgan, A. P., Solving the kinematics of the most general six and five-degree-of-freedom manipulators by continuation methods',ASME J. Mech. Transmissions Automat. Design 107(2), 189–200 (1985).

    Google Scholar 

  10. Eppinger, M. and Kreuzer, E., Evaluation of methods for solving the inverse kinematics of manipulators, Meerestechnik II — Strukturmechanik Technical report, Technische Universität Hamburg, Hamburg (1990).

    Google Scholar 

  11. Hartenberg, R. S. and Denavit, J.,Kinematic Synthesis of Linkages, McGraw-Hill, New York (1964).

    Google Scholar 

  12. Funda, J. and Paul, R. P., A computational analysis of screw transformations in robotics,IEEE Trans. Robot. Automat. 6(3), 348–356 (1989).

    Google Scholar 

  13. Angeles, J.,Rational Kinematics, Springer-Verlag, New York (1988).

    Google Scholar 

  14. Cheng, H. and Gupta, K. C., An historical note on finite rotations,ASME J. Appl. Mech. 56 139–142 (1989).

    Google Scholar 

  15. Angeles, J., Die theoretischen Grundlagen zur Behandlung algebraischer Singularitäten der kinematischen Koordinatetenumkehr in der Robotertechnik,Mech. Mach. Theory 26(3), 315–322 (1991).

    Google Scholar 

  16. Rodrigues, O., Des lois géométriques qui régissent les déplacements d'un système solide dans l'espace, et la variation des coordonnées provenant de ces déplacements considérés indépendamment des causes qui peuvent les produire.J. Math. Pures Appl. 5 380–440 (1840).

    Google Scholar 

  17. Tandirci, M., Contributions to on-line robot kinematics, MEng Thesis, Dept of Mechanical Engineering, McGill University, Montreal (1991).

    Google Scholar 

  18. Whitney, D. E., The mathematics of coordinated control of prosthetic arms and manipulators,ASME J. Dyn. Sys. Meas. Contr. 94(14), 303–309 (1972).

    Google Scholar 

  19. Press, W. H., Flannery, B. P., Teukolsky, S. A. and Vetterling, W. T.,Numerical Recipes in C, Cambridge University Press, Cambridge (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

An abridged version of this paper was presented in the 1992 IEEE International Conference on Robotics and Automation, 1992 [1].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tandirci, M., Angeles, J. & Darcovich, J. On rotation representations in computational robot kinematics. J Intell Robot Syst 9, 5–23 (1994). https://doi.org/10.1007/BF01258311

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01258311

Key words

Navigation