Skip to main content

Advertisement

Log in

Computational considerations in the implementation of force control strategies

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

This paper discusses computational and experimental details necessary for successfully implementing and evaluating a wide variety of force control strategies. First, a review of both explicit force and impedance control strategies is provided. Second, the basic computational requirements of these schemes are discussed, and the hardware and timing information for our implementation is provided. Third, computational problems such as noise filtering and sampling rates are explained and discussed in detail. Finally, a review of the experimental results obtained is provided. These results support the previous discussions by demonstrating the importance of fully considering the implementational details required for successful force control of robotic manipulators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. An, C. and Hollerbach, J., Dynamic stability issues in force control of manipulators, inProc. IEEE Conf. Robot. Automat., 1987, pp. 890–896.

  2. Bejczy, A., Robot arm dynamics and control, Technical Memorandum 33-669, Jet Propulsion Laboratory, Pasadena, CA, February 1974.

    Google Scholar 

  3. Colgate, E. and Hogan, N., An analysis of contact instability in terms of passive physical equivalents, inProc. IEEE Conf. Robot. Automat., 1989, pp. 404–409.

  4. Eppinger, S. and Seering, W., On dynamic models of robot force control, inProc. IEEE Conf. Robot. Automat., 1986, pp. 29–34.

  5. Eppinger, S. and Seering, W., Understanding bandwidth limitations on robot force control, inProc. IEEE Conf. Robot. Automat., Raleigh, N.C., 1987, pp. 904–909.

  6. Goldenberg, A., Implementation of force and impedance control in robot manipulators, inProc. IEEE Conf. Robot. Automat., 1988, pp. 1626–1632.

  7. Hamilton, W., Globally stable compliant motion control for robotic assembly, inProc. IEEE Conf. Robot. Automat., 1988, pp. 1179–1184.

  8. Hogan, N., Impedance control: An approach to manipulation: Parts I, II, and III,J. Dynam. Systems, Meas. Control 107 (1985), 1–24.

    Google Scholar 

  9. Kazerooni, H., Sheridan, T. and Houpt, P., Robust compliant motion for manipulators, Parts I and II,IEEE J. Robot. Automat. RA-2(2) (1986), 83–105.

    Google Scholar 

  10. Khatib, O., Commande dynamique dans l'espace operationnel des robots manipulateurs en presence d'obstacles, PhD thesis, Ecole Nationale Superieure de l'Aeronautique et de l'Espace (ENSAE), December 1980.

  11. Khatib, O., Real-time obstacle avoidance for manipulators and mobile robots,Int. J. Robot. Res. 5(1) (1986).

  12. Khatib, O. and Burdick, J., Motion and force control of robot manipulators, inProc. IEEE Conf. Robot. Automat., 1986, pp. 1381–1386.

  13. Khosla, P., Effect of sampling rates on the performance of model-based manipulator control schemes, in G. Schweitzer (ed),Dynamics of Controlled Mechanical Systems, Springer-Verlag, New York, August 1988, pp. 271–284.

    Google Scholar 

  14. Khosla, P., Recent advances in experimental robot control, in G. Taylor (ed),Kinematic and Dynamic Issues in Sensor-Based Robot Control, Springer-Verlag, New York, January 1990, pp. 161–178.

    Google Scholar 

  15. Kreutz, K., On manipulator control by exact linearization,IEEE Trans. Automat. Control 34(7) (1989), 763–767.

    Google Scholar 

  16. Luh, J., Walker, M. and Paul, R., Resolved-acceleration control of mechanical manipulators,IEEE Trans. Automat. Control 25(3) (1980), 468–474.

    Google Scholar 

  17. Markiewicz, B., Analysis of the computed-torque drive method and comparison with the conventional position servo for a computer-controlled manipulator, Technical Memorandum 33-601, Jet Propulsion Laboratory, Pasadena, CA, March 1973.

    Google Scholar 

  18. Mason, M., Compliance and force control for computer controlled manipulators,IEEE Trans. Systems Man Cybernet. 11(6) (1981), 418–432.

    Google Scholar 

  19. Miyazaki, F. and Arimoto, S., Sensory feedback for robot manipulators,J. Robot. Systems 2(1) (1985), 53–71.

    Google Scholar 

  20. Paul, R., Problems and research issues associated with the hybrid control of force and displacement, inProc. IEEE Conf. Robot. Automat., June 1987, pp. 1966–1971.

  21. Paul, R. and Shimano, B., Compliance and control, inProc. Joint Automat. Control Conf., American Automatic Control Council, 1976, pp. 694–699.

  22. Paul, R. and Wu, C., Manipulator compliance based on joint torque, inIEEE Conf. Decision Control, New Mexico, 1980, pp. 88–94.

  23. Paul, R. P.,Robot Manipulators: Mathematics, Programming and Control. MIT Press, Cambridge, MA, 1981.

    Google Scholar 

  24. Press, Williamet al., Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press, Cambridge, 1988.

    Google Scholar 

  25. Raibert, M. and Craig, J., Hybrid position/force control of manipulators,J. Dynam. Systems, Meas. Control 103(2) (1981), 126–133.

    Google Scholar 

  26. Salisbury, J. K., Active stiffness control of a manipulator in cartesian coordinates, inIEEE Conf. Decision and Control, New Mexico, 1980, pp. 95–100.

  27. Stewart, D., Schmitz, D. and Khosla, P., Implementing real-time robotic systems using chimera II. InProc. IEEE Int. Conf. Robot. Automat., May 1990, pp. 598–603.

  28. Stewart, D., Volpe, R. and Khosla, P., Integration of real-time software modules for reconfiguration sensor-based control systems, inProc. 1992 IEEE Int. Conf. Intelligent Robots and Systems, IEEE, July 1992.

  29. Townsend, W. and Salisbury, J., The effect of Coulumb friction and stiction on force control, inProc. IEEE Conf. Robot. Automat., 1987, pp. 883–889.

  30. Vischer, D. and Khatib, O.,Design and Development of Torque-Controlled Joints, Springer-Verlag, Berlin, Heidelberg, 1990, pp. 271–286.

    Google Scholar 

  31. Volpe, R., Real and artificial forces in the control of manipulators: theory and experiments, PhD thesis, Carnegie Mellon University, 1990.

  32. Volpe, R. and Khosla, P., Manipulator control with superquadratic artificial potential functions: Theory and experiments,IEEE Trans. Systems Man Cybernet., Special Issue on Unmanned Vehicles and Intelligent Systems, November/December 1990.

  33. Volpe, R. and Khosla, P., Theoretical analysis and experimental verification of a manipulator/sensor/ environment model for force control, inProc. IEEE Int. Conf. Systems Man Cybernet., Los Angeles, November 1990.

  34. Volpe, R. and Khosla, P., A theoretical and experimental investigation of impact control for manipulators,Internat. J. Robot. Res. 12(4), August 1993.

  35. Volpe, R. and Khosla, P., The equivalence of second order impedance control and proportional gain explicit force control: Theory and experiments, in R. Chatila and G. Hirzinger (eds),Experimental Robotics II, Springer-Verlag, London, 1993, pp. 3–24.

    Google Scholar 

  36. Volpe, R. and Khosla, P., An analysis of manipulator force control strategies applied to an experimentally derived model, inProc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Raleigh, North Carolina, 7–10 July, 1992.

  37. Volpe, R. and Khosla, P., A theoretical and experimental investigation of explicit force control strategies for manipulators,IEEE Trans. Autom. Control 38(11), November 1993.

  38. Wedel, D. and Saridis, G., An experiment in hybrid position/force control of a six DOF revolute manipulator, inProc. IEEE Conf. Robot. Automat., 1988, pp. 1638–1642.

  39. Whitney, D., Force feedback control of manipulator fine motions,J. Dynam. Systems, Meas. Control, June 1977, pp. 91–97.

  40. Whitney, D., Historical perspective and state of the art in robot force control, inProc. IEEE Conf. Robot. Automat., 1985, pp. 262–268.

  41. Xu, Y. and Paul, R., On position compensation and force control stability of a robot with a compliant wrist, inProc. IEEE Conf. Robot. Automat., 1988, pp. 1173–1178.

  42. Youcef-Toumi, K., Force control of direct-drive manipulators for surface following, inProc. IEEE Conf. Robot. Automat., 1987, pp. 2055–2060.

  43. Youcef-Toumi, K. and Gutz, D., Impact and force control, inProc. IEEE Conf. Robot. Automat., 1989, pp. 410–416.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Volpe, R., Khosla, P. Computational considerations in the implementation of force control strategies. J Intell Robot Syst 9, 121–148 (1994). https://doi.org/10.1007/BF01258316

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01258316

Key words