Skip to main content
Log in

Convergence of a Dinkelbach-type algorithm in generalized fractional programming

  • Published:
Zeitschrift für Operations Research Aims and scope Submit manuscript

Abstract

The convergence of a Dinkelbach-type algorithm in generalized fractional programming is obtained by considering the sensitivity of a parametrized problem. We show that the rate of convergence is at least equal to (1+√5)/2 when regularity conditions hold in a neighbourhood of the optimal solution. We give also a necessary and sufficient condition for the convergence to be quadratic (which will be verified in particular in the linear case) and an idea of its implementation in the convex case.

Zusammenfassung

Die Konvergenz eines Verfahrens i. S. von Dinkelbach zur Lösung verallgemeinerter Quotientenprogramme wird durch Untersuchung der Sensitivität eines parametrisierten Problems abgeleitet. Es wird gezeigt, daß die Konvergenzrate durch (1+√5)/2 nach unten beschränkt ist, falls gewisse Regularitätsbedingungen in einer Umgebung der Optimallösung erfüllt sind. Ferner wird eine notwendige und hinreichende Bedingung zur quadratischen Konvergenz hergeleitet. Es wird gezeigt, wie diese im Falle konvexer Probleme implementiert werden kann.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barrodale I, Powell MJD, Roberts FDK (1972) The differential correction algorithm for rationall -approximation. SIAM J Numerical Analysis 9:493–504

    Article  MATH  MathSciNet  Google Scholar 

  2. Borde J (1985) Quelques aspects théoriques et algorithmiques en quasi-convexité. Thèse de 3ème Cycle, Université de Clermont-Ferrand II

  3. Chabrillac Y (1982) Semi-définie positivité de formes quadratiques sur un sous-espace. Fonctions monotones dansRn. Thèse de 3ème Cycle, Université de Clermont-Ferrand II

  4. Charnes A, Cooper WW (1962) Programming with linear fractional functionals. Naval Research Logistics Quarterly 9:181–186

    Article  MATH  MathSciNet  Google Scholar 

  5. Cornet B, Vial JPh (0000) Lipschitzian solutions of perturbed nonlinear programming problems. Mathematical Programming Study (to appear)

  6. Crouzeix J-P, Ferland JA, Schaible S (1983) Duality in generalized linear fractional programming. Mathematical Programming 27:342–354

    Article  MATH  MathSciNet  Google Scholar 

  7. Crouzeix J-P, Ferland JA, Schaible S (1985) An algorithm for generalized fractional programs. Journal of Optimization Theory and Applications 47:35–49

    Article  MATH  MathSciNet  Google Scholar 

  8. Crouzeix J-P, Ferland JA, Schaible S (1986) A note on an algorithm for generalized fractional programs. Journal of Optimization Theory and Applications 50:183–187

    Article  MATH  MathSciNet  Google Scholar 

  9. Dinkelbach W (1967) On non-linear fractional programming. Management Science 13:492–498

    Article  MathSciNet  Google Scholar 

  10. Ferland JA, Potvin JY (1985) Generalized fractional programming: algorithms and numerical experimentation. European Journal of Operational Research 20:92–101

    Article  MATH  MathSciNet  Google Scholar 

  11. Fiacco AV (1976) Sensitivity analysis for nonlinear programming using penalty methods. Mathematical Programming 10:287–311

    Article  MATH  MathSciNet  Google Scholar 

  12. Flachs J (1985) Generalized Cheney-Loeb-Dinkelbach-Type algorithms. Mathematics of Operations Research 10:674–687

    Article  MATH  MathSciNet  Google Scholar 

  13. Haynsworth EV (1968) Determination of the inertia of a partitioned hermitian matrix. Linear Algebra and its Applications 1:73–81

    Article  MATH  MathSciNet  Google Scholar 

  14. Hiriart-Urruty J-B (1979) Tangent cones, generalized gradients and mathematical programming in Banach spaces. Mathematics of Operations Research 4:79–97

    Article  MATH  MathSciNet  Google Scholar 

  15. Ibaraki T (1982) Solving mathematical programs with fractional objective functions. In: Schaible S, Ziemba WT (eds) Generalized concavity in optimization and economics. Academic Press, pp 441–472

  16. Ibaraki T, Schaible S (1983) Invited review: fractional programming. European Journal of Operational Research 12:325–338

    Article  MATH  MathSciNet  Google Scholar 

  17. Isbell JR, Marlow WH (1956) Attrition games. Naval Research Logistics Quarterly 3:71–93

    Article  MathSciNet  Google Scholar 

  18. Rabinowitz-Ralston (1981) A first course in numerical analysis. McGraw-Hill, New York

    Google Scholar 

  19. Schaible S (1976) Fractional programming-II, on Dinkelbach's algorithm. Management Science 22:868–873

    Article  MATH  MathSciNet  Google Scholar 

  20. Schaible S (1978) Analyse and Anwendungen von Quotientenprogrammen. Verlag Anton Hain, Meisenheim am Glan

    Google Scholar 

  21. Schaible S (1981) Fractional programming: applications and algorithms. European Journal of Operational Research 7:111–120

    Article  MATH  MathSciNet  Google Scholar 

  22. Schaible S (1982) Bibliography in fractional programming. Zeitschrift für Operations Research 26:211–241

    Article  MATH  MathSciNet  Google Scholar 

  23. Von Neumann J (1945) A model of general economic equilibrium. Rev Econom Studies 13:1–9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borde, J., Crouzeix, J.P. Convergence of a Dinkelbach-type algorithm in generalized fractional programming. Zeitschrift für Operations Research 31, A31–A54 (1987). https://doi.org/10.1007/BF01258607

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01258607

Key words