Abstract
We show that there is a set of pointsp 1,p 2,...,p n such that any arithmetic circuit of depthd for polynomial evaluation (or interpolation) at these points has size
Moreover, for circuits of sub-logarithmic depthd, we obtain a lower bound of Ω(dn 1+1/d) on its size.
Similar content being viewed by others
References
A. V. Aho, J. E. Hopcroft, andJ. D. Ullman,The Design and Analysis of Computer Algorithms. Addison-Wesley, Reading MA, 1974.
A. Borodin andI. Munro,The Computational Complexity of algebraic and numeric Problems. American Elsevier, New York NY, 1975.
J. F. Canny, E. Kaltofen, and L. Yagati, Solving systems of non-linear polynomial equations faster. InProc. International Symposium on Symbolic and Algebraic Computation, 1989, 121–128.
J. Friedman, Note on matrix rigidity.Combinatorica 13 (1993), 235–239.
J. Morgenstern, Note on a lower bound of the linear complexity of the Fast Fourier Transform.JACM 20(2) (1973), 305–306.
A. A. Razborov, On rigid matrices. Preprint, 1991.
V. Strassen, Vermeidung von Divisionen.J. reine u. angew. Math. 264 (1973a), 182–202.
V. Strassen, Die Berechnungskomplexität von elementarsymmetrischen Funktionen und von Interpolationskoeffizienten.Numer. Math. 20 (1973b), 238–251.
L. G. Valiant, Graph-theoretic arguments in low-level complexity. InMFCS 1977, Springer-Verlag LNCS, 1977, 162–176.
Author information
Authors and Affiliations
Additional information
Dedicated to the memory of Roman Smolensky
Rights and permissions
About this article
Cite this article
Shoup, V., Smolensky, R. Lower bounds for polynomial evaluation and interpolation problems. Comput Complexity 6, 301–311 (1996). https://doi.org/10.1007/BF01270384
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF01270384