Summary
It is shown how the strong ordinal notation systems that figure in proof theory and have been previously defined by employing large cardinals, can be developed directly on the basis of their recursively large counterparts. Thereby we provide a completely new approach to well-ordering proofs as will be exemplified by determining the proof-theoretic ordinal of the systemKPM of [R91].
Similar content being viewed by others
References
[Bac50] Bachmann, H.: Die Normalfunktionen und das Problem der ausgezeichneten Folgen von Ordinalzahlen. Vierteljahresschr. Nat. Ges. Zürich95, 5–37 (1950)
[Bar75] Barwise, J.: Admissible sets and structures. Berlin Heidelberg New York: Springer 1975
[Bu86] Buchholz, W.: A new system of proof-theoretic ordinal functions. Ann. Pure Appl. Logic32, 195–207 (1986)
[Bu92] Buchholz, W.: A simplified version of local predicativity. In: Aczel, Simmons, Wainer (eds.) Proof Theory, Cambridge University Press 1992
[Bu et al. 81] Buchholz, W., Feferman, S., Pohlers, W., Sieg, W.: Iterated inductive definitions and subsystems of analysis. LNM 897. Berlin Heidelberg New York: Springer 1981
[Bu-P78] Buchholz, W., Pohlers, W.: Provable wellorderings of formal theories for transfinitely iterated inductive definitions. J. Symb. Logic43, 118–125 (1978)
[Bu-S88] Buchholz, W., Schütte, K.: Proof theory of impredicative subsystems of analysis. Naples: Bibliopolis 1988
[F87] Feferman, S.: Proof theory: a personal report. In: G. Takeuti, Proof theory, second edition. Amsterdam: North-Holland 1987, pp. 447–485
[I70] Isles, D.: Regular ordinals and normal forms. In: Myhill, Kino, Vesley (eds.), Intuitionism and proof theory, Amsterdam: North Holland 1970, pp. 339–361
[J84] Jäger, G.: ϱ-inaccessible ordinals, collapsing functions and a recursive notation system. Arch. Math. Logik Grundlagenforsch.24, 49–62 (1984)
[P87] Pohlers, W.: Ordinal notations based on a hierarchy of inaccessible cardinals. Ann. Pure Appl. Logic33, 157–179 (1987)
[P91] Pohlers, W.: Proof theory and ordinal analysis. Arch. Math. Logic30, 311–376 (1991)
[R90] Rathjen, M.: Ordinal notations based on a weakly Mahlo cardinal. Arch. Math. Logic29, 249–263 (1990)
[R91] Rathjen, M.: Proof-theoretic analysis of KPM. Arch. Math. Logic30, 377–403 (1991)
[R92] Rathjen, M.: Fragments of Kripke-Platek set theory with infinity. In: Aczel, P., Wainer, S., Simmons, S. (eds.), Proof theory. Cambridge University Press 1992, pp. 251–273
[R93a] Rathjen, M.: How to develop proof-theoretic ordinal functions on the basis of admissible sets. Mathematical Quaterly39, 47–54 (1993)
[R93b] Rathjen, M.: Proof theory of reflection. 1993. To appear in: Ann. Pure Appl. Logic
[S77] Schütte, K.: Proof theory. Berlin Heidelberg New York: Springer 1977
[S88] Schütte, K.: Ein Wohlordnungsbeweis für das OrdinalzahlensystemT(J). Arch. Math. Logic27, 5–20 (1988)
Author information
Authors and Affiliations
Additional information
The author would like to thank the National Science Foundation for partially supporting this research by grant DMS-9203443
About this article
Cite this article
Rathjen, M. Collapsing functions based on recursively large ordinals: A well-ordering proof for KPM. Arch Math Logic 33, 35–55 (1994). https://doi.org/10.1007/BF01275469
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF01275469