Skip to main content
Log in

The strength of some Martin-Löf type theories

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

One objective of this paper is the determination of the proof-theoretic strength of Martin-Löf's type theory with a universe and the type of well-founded trees. It is shown that this type system comprehends the consistency of a rather strong classical subsystem of second order arithmetic, namely the one with Δ 12 comprehension and bar induction. As Martin-Löf intended to formulate a system of constructive (intuitionistic) mathematics that has a sound philosophical basis, this yields a constructive consistency proof of a strong classical theory. Also the proof-theoretic strength of other inductive types like Aczel's type of iterative sets is investigated in various contexts.

Further, we study metamathematical relations between type theories and other frameworks for formalizing constructive mathematics, e.g. Aczel's set theories and theories of operations and classes as developed by Feferman.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • [A 77] Aczel, P.: The strength of Martin-Löf's intuitionistic type theory with one universe. In: Miettinen, S., Vaänänen, S. (eds.) Proceedings of Symposia in Mathematical Logic. Oulu 1974, and Helsinki 1975. Report No. 2, University of Helsinki, Department of Philosophy, 1977, 1–32

  • [A 78] Aczel, P.: The type theoretic interpretation of constructive set theory. In: MacIntyre, A., Pacholski, L., Paris, J. (eds.) Logic Colloquium '77. Amsterdam: North-Holland 1978

    Google Scholar 

  • [A 82] Aczel, P.: The type theoretic interpretation of constructive set theory: choice prinicples. In: Troelstra, A.S., van Dalen, D. (eds.) The L.E.J. Brouwer Centenary Symposium. Amsterdam: North-Holland 1982

    Google Scholar 

  • [A 86] Aczel, P.: The type theoretic interpretation of constructive set theory: inductive definitions. In: Marcus, R.B. et al. (eds) Logic, Methodology, and Philosopy of Science VII. Amsterdam: North-Holland 1986

    Google Scholar 

  • [Ba 75] Barwise, J.: Admissible sets and structures. Berlin: Springer 1975

    Google Scholar 

  • [Be 82] Beeson, M.: Recursive models for constructive set theories. Ann. Math. Logic23, 126–178 (1982)

    Google Scholar 

  • [Be 85] Beeson, M.: Foundations of constructive mathematics. Berlin: Springer 1985

    Google Scholar 

  • [BFPS 81] Buchholz, W., Feferman, S., Pohlers, W., Sieg, W.: Iterated inductive definitions and subsystems of analysis. Lect. Notes Math. 897. Berlin: Springer 1981

    Google Scholar 

  • [F 75] Feferman, S.: A language and axioms for explicit mathematics. Lect. Notes Math.450, 87–139 (1975)

    Google Scholar 

  • [F 79] Feferman, S.: Constructive theories of functions and classes. In: Boffa, M., van Dalen, D., McAloon, K. (eds.) Logic Colloquium '78, pp.IARI 159–224. Amsterdam: North-Holland 1979

    Google Scholar 

  • [FS 81] Feferman, S., Sieg, W.: Proof-theoretic equivalences between classical and constructive theories of analysis. Lect. Notes Math.897, 78–142 (1981)

    Google Scholar 

  • [GP 90] Griffor, E.R., Palmgren, E.: An intuitionistic theory of transfinite types. Uppsala: University of Uppsala Preprint 1990

  • [J 82] Jäger, G.: Zur Beweistheorie der Kripke-Platek-Mengenlehre über den natürlichen Zahlen. Arch. Math. Logik22, 121–139 (1982)

    Google Scholar 

  • [J 83] Jäger, G.: A well-ordering proof for Feferman's theoryT 0. Arch Math. Logik23, 65–77 (1983)

    Google Scholar 

  • [JP 82] Jäger, G., Pohlers, W.: Eine beweistheoretische Untersuchung vonΔ 1 2 CA +BI und verwandter Systeme. Sitzungsberichte der Bayerischen Akademie der Wissenschaften, Mathematisch-Naturwissenschaftliche Klasse (1982)

  • [ML 84] Martin-Löf, P.: Intuitionistic type theory. Naples:Bibliopolis 1984

    Google Scholar 

  • [My 75] Myhill, J.: Constructive set theory. JSL40, 347–382 (1975)

    Google Scholar 

  • [NPS 90] Nordström, B., Petersson, K., Smith, J.M.: Programming in Martin-Löf's type theory. Oxford: Clarendon Press, 1990

    Google Scholar 

  • [P 93] Palmgren, E.: Type-theoretic interpretations of iterated, strictly positive inductive definitions. Arch. Math. Logic32, 75–99 (1993)

    Google Scholar 

  • [R 89] Rathjen, M.: Untersuchungen zu Teilsystemen der Zahlentheorie zweiter Stufe und der Mengenlehre mit einer zwischen Δ 12 CA und Δ 12 CA 12 BI liegenden Beweisstärke. Münster: University of Münster, Institute for Mathematical Logic and Foundational Research 1989

    Google Scholar 

  • [R 91] Rathjen, M.: Proof-theoretic analysis of KPM. Arch. Math. Logic30, 377–403 (1991)

    Google Scholar 

  • [S 93] Setzer, T.: Proof theoretical strength of Martin-Löf type theory with W-type and one universe. Thesis, University of Munich, 1993

  • [TD 88] Troelstra, A. S., van Dalen, D.: Constructivism in mathematics: an introduction, vol.IARIume II. Amsterdam: North-Holland 1988

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The second author would like to thank the National Science Foundation of the USA for support by grant DMS-9203443

This article was processed by the author using the LATEX style filepljour1 from Spinger-Verlag.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Griffor, E., Rathjen, M. The strength of some Martin-Löf type theories. Arch Math Logic 33, 347–385 (1994). https://doi.org/10.1007/BF01278464

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01278464

Keywords

Navigation