Abstract
It is shown that, for an arbitrary functionθ(x) → ∞, for almost all prime numbersp of any interval of the form [N−ɛ,N] there exists an irreducible modulop polynomial with coefficients of orderO(θ(p)).
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Adleman L. M., Lenstra H. W.: Finding Irreducible Polynomials over Finite Fields. Proc. 18 ACM Symp. Theory Comp 350–355 (1986)
Perelli A., Pintz J., Salerno S.: Bombieri's Theorem in Short Intervals, 2. Invent. Mathem.79, 1–9 (1985)
Prachar K.: Primzahlverteilung. Berlin, Heidelberg, New York: Springer 1957
Shparlinski I. E.: Coefficients of Primitive Polynomials. Matem. Zametki38 (6), 810–815 Russian (1985)
—: On the Distribution Primitive and Irreducible Polynomials Modulo a Prime, Diskretnaja Matem.1 (1), 117–124 (Russian) (1989)
—: Computational and Algorithmic Problems in Finite Fields, Kluwer AP, Dordrecht, 1992
Stephens P. J.: An average result for Artin's conjecture, Mathematika16 (1), 178–188 (1989)
Timofeev N. M.: The Distribution of Arithmetical Functions over Arithmetic Progressions in Short Intervals. Izvestija Acad. Sci. USSR, Ser. Math.51, 341–362 (1987) (Russian)
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Shparlinski, I.E. On irreducible polynomials of small height over finite fields. AAECC 7, 427–431 (1996). https://doi.org/10.1007/BF01293260
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF01293260