Skip to main content
Log in

Sparse shifts for univariate polynomials

  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract

Letf(x) be a polynomial of degreed with rational coefficients and lett be a positive integer ⩽ deg(f). We consider the problem of finding at-sparse shift forf(x). The problem is to find an a, if one exists (in some algebraic extension of the rationals), such that in the representation off(x) in the basis 1,x − α, (x − α)2,..., i.e.,\(f(x) = \sum\nolimits_{i = 0^{F_i } }^d {(x - \alpha )^i } \) at most t of the coefficients fi are non-zero. We derive explicit conditions for the uniqueness and rationality of at-sparse shift forf(x) and provide an efficient algorithm for computing a sparse shift when one exists. We also point out an application of our result to the problem of constructing sparse decompositions of univariate polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ben Or, M., Tiwari, P.: A deterministic algorithm for sparse multivariate polynomial interpolation. Proc. 20th Symp. Theory Comput. ACM Press, pp. 301–309 (1988)

  2. Borodin, A., Tiwari, P.: On the decidability of sparse univariate polynomial interpolation. Proc. 22nd Symp. Theory Comput. ACM Press, pp. 535–545 (1990)

  3. Fried, M. D., MacRae, R. E.: On the invariance of chains of fields. Ill. J. Math.,13, 165–171 (1969)

    Google Scholar 

  4. von zur Gathen, J., Kozen, D., Landau, S.: Functional decomposition of polynomials. Proc. 28th IEEE Symp. Found. Comp. Sci., pp. 127–131. Nov 1987

  5. Clausen, M., Dress, A., Grabmeier, J., Karpinski, M: On zero testing and interpolation ofk-sparse multivariate polynomials over finite fields. TR 88.06.006, IBM Germany, Heidelberg Scientific Center. June 1988

  6. Grigoriev, D. Yu., Karpinski, M.: The matching problem for bipartite graphs with polynomially bounded permanents is in NC. Proc. 28th IEEE Symp. Foundations Comp. Sci. pp. 166–172 (1987)

  7. Grigoriev, D., Karpinski, M., Singer, M.: Fast parallel algorithms for sparse multivariate polynomial interpolation over finite fields. SIAM J. Comp.19, 1059–1063 (1990)

    Google Scholar 

  8. Grigoriev, D., Karpinski, M., Singer, M.: Computational complexity of sparse rational interpolations. SIAM J. Comp.23, 1–11 (1994)

    Google Scholar 

  9. Grigoriev, D., Karpinski, M., Singer, M.: Computational complexity of sparse real algebraic function interpolation. Proc. MEGA '92, Progress in Mathematics, Birkhauser, Basel Vol. 109, pp. 91–104

  10. Grigoriev, D., Karpinski, M., Singer, M.: The interpolation problem for k-sparse sums of eigenfunctions of operators. Adv Appl Math12, 76–81 (1991)

    Google Scholar 

  11. Grigoriev, D., Karpinski, M.: A zero-test and an interpolation algorithm for the shifted sparse polynomials. Proc. AAECC-93, Lect. Notes in Comp. Sci., Vol. 673, pp. 162–169. Berlin, Heidelberg, New York, Springer 1993

    Google Scholar 

  12. Grigoriev, D., Karpinski, M., Odlyzko, A. M.: Existence of short proofs of non-divisibility of sparse polynomials under the extended Riemann hypothesis. Proc. ISSAC 92, ACM Press, pp. 117–122 (1992a)

  13. Kaltofen, E.: Single-factor Hensel lifting and its application to the straight-line complexity of certain polynomials. Proc. 19th Symp. Theory of Computing, ACM Press, pp. 443–452 (1987)

  14. Kaltofen, E., Lakshman, Y. N.: Improved sparse multivariate polynomial interpolation algorithms, Proc. ISSAC 1988, Rome, Italy, Berlin, Heidelberg, New york. Springer LNCS vol. 358, pp. 167–474 (1988)

    Google Scholar 

  15. Kaltofen, E., Trager, B.: Computing with polynomials given by black boxes for their evaluations: Greatest common divisors, factorization, separation of numerators and denominators. J. Symb. Comp.9, 301–320 (1990)

    Google Scholar 

  16. Kaplanski, I.: An introduction to differential algebra. Hermann, Paris.

  17. Kozen, D., Landau, S.: Polynomial decomposition algorithms. JSC, Vol. 7, (5), 445–456

  18. Lakshman, Y. N., Saunders, B. D.: Sparse polynomial interpolation in non-standard bases. SIAM J. Comp.24, (2), 387–397 (1995)

    Google Scholar 

  19. Lakshman, Y. N., Saunders, B. D.: On computing sparse shifts for univariate polynomials. Proc. ISSAC 1994, Oxford, OK, ACM Press

    Google Scholar 

  20. Loos, R.: Computing rational zeros of integral polynomials byp-adic expansion. SIAM J. Comp.,12, 286–293

  21. Mansour, Y.: Randomized interpolation and approximation of sparse polynomials. SIAM J. Comp.,24, (2), 357–368 (1995)

    Google Scholar 

  22. Muir, T. (enlarged by Metzler, H.): A treatise on the theory of determinants, Dover Publishing, New York (1960)

    Google Scholar 

  23. Ritt, J. F.: Prime and composite polynomials. Trans. Am. Math. Soc.23, 51–66 (1922)

    Google Scholar 

  24. Zippel, R.: Interpolating polynomials from their values. J. Symb. Comp.,9, (3), 375–403 (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work by Y. N. Lakshman was supported by NSF grant CCR-9203062

Work by B. D. Saunders was supported by NSF grant CCR-9123666

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lakshman, Y.N., Saunders, B.D. Sparse shifts for univariate polynomials. AAECC 7, 351–364 (1996). https://doi.org/10.1007/BF01293594

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01293594

Navigation