Abstract
Binary block codes for correctingt symmetric, asymmetric and unidirectional errors are calledt-SyEC codes,t-AsEC codes andt-UEC codes respectively. Two tables with bounds on the cardinality of binary block codes for correcting asymmetric and unidirectional errors respectively are presented. They include many improvements over the existing literature. The lower bounds follow from explicit constructions, while the upper bounds are obtained by applying combinatorial arguments to the weight structure of such codes.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Bose, B., Rao, T. R. N.: Theory of unidirectional error correcting/detecting codes. IEEE Trans. Comput.31, 521–530 (1982)
Brouwer, A. E., Shearer, J. B., Sloane, N. J. A., Smith, W. D.: A new table of constant weight codes. IEEE Trans. Inform. Theory IT-36, 1334–1380 (1990)
Brouwer, A. E.: Private communication
Bussemaker, F. C., Mathon, R. A., Seidel, J. J.: Tables of two-graphs. T.H.-Report 79-WSK-05, Eindhoven University of Technology, October 1979
Delsarte, P., Piret, P.: Bounds and constructions for binary asymmetric error-correcting codes, IEEE Trans. Inf. TheoryIT-27, 125–128 (1981); correction, vol. 36(4), p. 954, (1990)
Etzion, T.: New lower bounds for asymmetric and unidirectional codes, IEEE Trans. Infor. TheoryIT-37, 1696–1704 (1991)
Fang, G., van Tilborg, H. C. A.: Uniqueness of 1-AsEc codes for length ≦ 8. Preprint
Fang, G., van Tilborg, H. C. A.: New tables of AsEC and UEC codes. EUT Report 91-WSK-02, Eindhoven University of Technology, The Netherlands 1991
Hall, Jr., M.: Combinatorial Theory. New York: John Wiley 1986
Honkala, I. S.: Some lower bounds for constant weight codes. Discrete Appl. Math.18, 95–98 (1987)
Kim, W. H., Freiman, C. V.: Single error-correcting codes for asymmetric binary channels, IRE Trans. Inform. TheoryIT-5, 62–66 (1959)
Kløve, T.: Error correcting codes for the asymmetric channel. Rep. 18-09-07-81, Department of Mathematics, University of Bergen, Norway, July 1981
—: Upper bounds on codes correcting asymmetric errors. IEEE Trans. Inform. Theory IT-27(1), 128–131 (1981)
MacWilliams, F. J., Sloane, N. J. A.: The Theory of Error-Correcting Codes. Amsterdam: North-Holland 1979
Rao, T. R. N. Fujiwara, E.: Error-Control coding for Computer Systems. Prentice-Hall, Englewood Cliffs, New Jersey 1989
Saitoh, Y., Yamaguchi, K., Imai, H.: Some new binary codes correcting asymmetric/unidirectional errors. IEEE Trans. Inform. Theory IT-36, 645–647 (1990)
Sloane, N. J. A., Seidel, J. J.: A new family of nonlinear codes obtained from conference matrices. Ann. NY Acad. Sci.175, 363–365 (1970)
Van Lint, J. H., Weber, J. H.: Some combinatorial codes for the binary asymmetric channel, Preprint
Weber, J. H.: Bounds and constructions for binary block codes correcting asymmetric or unidirectional errrors. The Ph.D. dissertation, Department of Electrical Engineering of Delft University of Technology, The Netherlands 1989
Weber, J. H., de Vroedt, C., Boekee, D. E.: New upper bounds on the size of codes correcting asymmetric errors. IEEE Trans. Inform. Theory IT-33, 434–437 (1987)
—: Bounds and constructions for binary codes of length less than 24 and asymmetric distance less than 6. IEEE Trans. Inform. Theory IT-34, 1321–1331 (1988)
—: Bounds and constructions for codes correcting unidirectional errors, IEEE Trans. Inform. TheoryIT-35, 797–810 (1989)
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Fang, G., van Tilborg, H.C.A. Bounds and constructions of asymmetric or unidirectional error-correcting codes. AAECC 3, 269–300 (1992). https://doi.org/10.1007/BF01294837
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF01294837