Skip to main content
Log in

Optimal assignment of cells in PCS networks

  • Published:
Personal Technologies Aims and scope Submit manuscript

Abstract

This paper deals with the assignment problem of cells to switches in a personal communication service network. Three types of costs in a PCS network are considered in detail: the cost of handoffs, the cost of cabling, and the cost of switching. The optimal assignment problem is formulated as an integer-programming problem. A heuristic algorithm is proposed to obtain an assignment of cells in a PCS network. The proposed algorithm is compared with an existing heuristic cell assignment algorithm. By numerical examination, it is shown that the switching cost has a large effect on the solution of the cell assignment problem. The proposed algorithm obtains much better cell assignment in which the load of each switch is balanced and the total cost of a PCS network is much lower than what is obtained by the existing algorithm that does not take account of the switching cost. If the switching cost is taken into account, it has also been shown that our proposed algorithm achieves substantially the same results as the existing algorithm while requiring much less computation time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cox DC. Personal communications: a viewpoint. IEEE Commun Mag 1990; Nov: 8–20.

    Google Scholar 

  2. Homa J, Harris S. Intelligent network requirements for personal communications services. IEEE Commun Mag 1992; Feb: 70–76.

    Google Scholar 

  3. Grag VK, Wilkes JE. Wireless and personal communications systems. Prentice-Hall, Englewood Cliffs, NJ 1996.

    Google Scholar 

  4. Tuttlebee WHW. Cordless personal communications. IEEE Commun Mag 1992; Dec: 42–53.

    Google Scholar 

  5. Merchant A, Sengupta B. Assignment of cells to switches in PCS networks. IEEE/ACM Trans Networking 1995; 3(5): 521–526.

    Google Scholar 

  6. Gibson JD (ed in chief). The mobile communications handbook. CRC Press/IEEE Press, Boca Raton, FL, 1996.

    Google Scholar 

  7. Goodman DJ, Pollini GP, Meier-Hellstern KS. Network control for wireless communications. IEEE Commun Mag 1992; Dec: 116–124.

    Google Scholar 

  8. Lin Y. Mobility management for cellular telephony networks. IEEE Parallel Distrib Technol 1996; 4(4): 65–73.

    Google Scholar 

  9. Yacoub MD. Foundations of mobile radio engineering. CRC Press, Boca Raton, FL 1993.

    Google Scholar 

  10. Alonso E, Meier-Hellstern KS, Pollini GP. Influence of cell geometry on handover and registration rates in cellular and universal personal telecommunications networks. In: 8th ITC Specialist Seminar in Universal Personal Communications, Genova, Italy, 1992.

  11. Kleinrock L. Queueing systems. Vol 2: Computer applications. Wiley, New York 1976.

    Google Scholar 

  12. Garey MR, Johnson DS. Computers and intractability: a guide to the theory of NP-completeness. Freeman, New York 1979.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Kameda, H. & Itoh, H. Optimal assignment of cells in PCS networks. Personal Technologies 1, 127–134 (1997). https://doi.org/10.1007/BF01299647

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01299647

Keywords

Navigation