Abstract
Numeration systems, the basis of which is defined by a linear recurrence with integer coefficients, are considered. We give conditions on the recurrence under which the function of normalization which transforms any representation of an integer into the normal one—obtained by the usual algorithm—can be realized by a finite automaton. Addition is a particular case of normalization. The same questions are discussed for the representation of real numbers in basis θ, where θ is a real number > 1, in connection with symbolic dynamics. In particular it is shown that if θ is a Pisot number, then the normalization and the addition in basis θ are computable by a finite automaton.
Similar content being viewed by others
References
A. Avizienis, Signed-digit number representations for fast parallel arithmetic.IRE Trans. Electron. Comput. 10, 1961, 389–400.
J. Berstel,Transductions and Context-free Languages. Teubner, Stuttgart, 1979.
A. Bertrand-Mathis, Répartition modulo un des suites exponentielles et systémes dynamiques symboliques. Thèse d'Etat, Université Bordeaux 1, 1986.
J. P. Bézivin, Personal communication, 1989.
F. Blanchard, β-expansions and symbolic dynamics.Theoret. Comput. Sci. 65, 1989, 131–141.
A. Brauer, On algebraic equations with all but one root in the interior of the unit circle.Math. Nachr. 4, 1951, 250–257.
S. Eilenberg,Automata, Languages and Machines, Vol. A, Academic Press, New York, 1974.
A. S. Fraenkel, Systems of numeration.Amer. Math. Monthly 92(2), 1985, 105–114.
Ch. Frougny, Linear numeration systems of order two.Inform. Comput. 77, 1988, 233–259.
Ch. Frougny, Linear numeration systems, θ-developments and finite automata.Proceedings of STACS 89, Lecture Notes in Computer Science, Vol. 349, Springer-Verlag, Berlin, 1989, pp. 144–155.
Ch. Frougny, Systémes de numération linéaires et automates finis. Thèse d'Etat, Université Paris 7, Rapport LITP 89-69, 1989.
Ch. Frougny and J. Sakarovitch, Rational relations with bounded delay.Proceedings of STACS 91, Lecture Notes in Computer Science, Vol. 480, Springer-Verlag, Berlin, 1991, pp. 50–63.
D. E. Knuth,The Art of Computer Programming, Vols. 1–3. Addison-Wesley, Reading, MA, 1975.
D. Lind, The entropies of topological Markov shifts and a related class of algebraic integers.Ergodic Theory Dynamical Systems 4, 1984, 283–300.
W. Parry, On the β-expansions of real numbers.Acta Math. Acad. Sci. Hungar. 11, 1960, 401–416.
A. Pethö and R. Tichy, On digit expansions with respect to linear recurrences.J. Number Theory 33, 1989, 243–256.
G. Rauzy, Sur la latitude d'un développement en base non entière. To appear.
A. Rényi, Representations for real numbers and their ergodic properties.Acta Math. Acad. Sci. Hungar. 8, 1957, 477–493.
E. Zeckendorf, Représentation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas.Bull. Soc. Roy. Sci. Liège 3–4, 1972, 179–182.
Author information
Authors and Affiliations
Additional information
This work has been supported by the PRC Mathématiques et Informatique.
Rights and permissions
About this article
Cite this article
Frougny, C. Representations of numbers and finite automata. Math. Systems Theory 25, 37–60 (1992). https://doi.org/10.1007/BF01368783
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF01368783