Skip to main content
Log in

Representations of numbers and finite automata

  • Published:
Mathematical systems theory Aims and scope Submit manuscript

Abstract

Numeration systems, the basis of which is defined by a linear recurrence with integer coefficients, are considered. We give conditions on the recurrence under which the function of normalization which transforms any representation of an integer into the normal one—obtained by the usual algorithm—can be realized by a finite automaton. Addition is a particular case of normalization. The same questions are discussed for the representation of real numbers in basis θ, where θ is a real number > 1, in connection with symbolic dynamics. In particular it is shown that if θ is a Pisot number, then the normalization and the addition in basis θ are computable by a finite automaton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Avizienis, Signed-digit number representations for fast parallel arithmetic.IRE Trans. Electron. Comput. 10, 1961, 389–400.

    Google Scholar 

  2. J. Berstel,Transductions and Context-free Languages. Teubner, Stuttgart, 1979.

    Google Scholar 

  3. A. Bertrand-Mathis, Répartition modulo un des suites exponentielles et systémes dynamiques symboliques. Thèse d'Etat, Université Bordeaux 1, 1986.

  4. J. P. Bézivin, Personal communication, 1989.

  5. F. Blanchard, β-expansions and symbolic dynamics.Theoret. Comput. Sci. 65, 1989, 131–141.

    Google Scholar 

  6. A. Brauer, On algebraic equations with all but one root in the interior of the unit circle.Math. Nachr. 4, 1951, 250–257.

    Google Scholar 

  7. S. Eilenberg,Automata, Languages and Machines, Vol. A, Academic Press, New York, 1974.

    Google Scholar 

  8. A. S. Fraenkel, Systems of numeration.Amer. Math. Monthly 92(2), 1985, 105–114.

    Google Scholar 

  9. Ch. Frougny, Linear numeration systems of order two.Inform. Comput. 77, 1988, 233–259.

    Google Scholar 

  10. Ch. Frougny, Linear numeration systems, θ-developments and finite automata.Proceedings of STACS 89, Lecture Notes in Computer Science, Vol. 349, Springer-Verlag, Berlin, 1989, pp. 144–155.

    Google Scholar 

  11. Ch. Frougny, Systémes de numération linéaires et automates finis. Thèse d'Etat, Université Paris 7, Rapport LITP 89-69, 1989.

  12. Ch. Frougny and J. Sakarovitch, Rational relations with bounded delay.Proceedings of STACS 91, Lecture Notes in Computer Science, Vol. 480, Springer-Verlag, Berlin, 1991, pp. 50–63.

    Google Scholar 

  13. D. E. Knuth,The Art of Computer Programming, Vols. 1–3. Addison-Wesley, Reading, MA, 1975.

    Google Scholar 

  14. D. Lind, The entropies of topological Markov shifts and a related class of algebraic integers.Ergodic Theory Dynamical Systems 4, 1984, 283–300.

    Google Scholar 

  15. W. Parry, On the β-expansions of real numbers.Acta Math. Acad. Sci. Hungar. 11, 1960, 401–416.

    Google Scholar 

  16. A. Pethö and R. Tichy, On digit expansions with respect to linear recurrences.J. Number Theory 33, 1989, 243–256.

    Google Scholar 

  17. G. Rauzy, Sur la latitude d'un développement en base non entière. To appear.

  18. A. Rényi, Representations for real numbers and their ergodic properties.Acta Math. Acad. Sci. Hungar. 8, 1957, 477–493.

    Google Scholar 

  19. E. Zeckendorf, Représentation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas.Bull. Soc. Roy. Sci. Liège 3–4, 1972, 179–182.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work has been supported by the PRC Mathématiques et Informatique.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frougny, C. Representations of numbers and finite automata. Math. Systems Theory 25, 37–60 (1992). https://doi.org/10.1007/BF01368783

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01368783

Keywords