Skip to main content
Log in

The generalized HNBUE (HNWUE) class of life distributions

  • Published:
Zeitschrift für Operations Research Aims and scope Submit manuscript

Abstract

This paper examines the properties of a new class of life distributions (and its dual class), named GHNBUE (GHNWUE) whose members have a coefficient of variation less than (greater than) or equal to one. We characterize the GHNBUE (GHNWUE) property by using the Laplace transform. Several interesting shock models leading to the GHNBUE (GHNWUE) property are studied. These include both homogeneous and nonhomogeneous Poisson processes governing the arrival of shocks. A certain cumulative damage model is also investigated. We also examine whether the GHNBUE (GHNWUE) property is preserved under the reliability operations: (i) Convolution, (ii) mixtures and (iii) formation of coherent systems.

Zusammenfassung

Diese Arbeit untersucht Eigenschaften einer neuen Klasse von Lebensdauer-Verteilungen (und deren dualen Klasse), welche GHNBUE (bzw. GHNWUE) genannt wird und deren Elemente einen Variationskoeffizienten ⩽ 1 (bzw. ⩾ 1) haben. Wir charakterisieren die GNBUE (GHNWUE) Eigenschaft mit Hilfe der Laplace-Transformierten der Verteilung. Es werden verschiedene interessente Schockmodelle, welche zur GHNBUE (GHNWUE) Eigenschaft führen, studiert. Als Ankunftsprozesse der Schocks verwenden wir homogene und inhomogene Poisson-Prozesse. Auch ein gewisses additives Schadensmodell wird untersucht. Wir befassen uns auch mit der Frage, ob die GHNBUE (GHNWUE) Eigenschaft unter folgenden Zuverlässigkeitsoperationen erhalten bleibt: 1. Faltung, 2. Mischungen, 3. Bildung kohärenter Systeme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • A-Hamed M, Proschan F (1973) Nonstationary shock models. Stoc Proc Appl 1:383–404

    Google Scholar 

  • A-Hameed M, Proschan F (1975) Shock models with underlying birth process. J Appl Prob 12: 18–28

    Google Scholar 

  • Ahmed A, Alzaid A (1988) Systems with exponential life and HNBUE component lives. IEEE Trans Rel 37:424–426

    Google Scholar 

  • Barlow R, Proschan F (1975) Statistical theory of reliability and life testing. Holt, Rinehart and Winston, New York

    Google Scholar 

  • Block H, Savits T (1980) Laplace transforms for classes of life distribution. Ann Prob 8:465–474

    Google Scholar 

  • Esary J, Marshall A, Proschan F (1973) Shock model and wear Processes. Ann Prob 1:627–649

    Google Scholar 

  • Gaines A (1973) Some contributions to the theory of restricted classes of distributions with application to reliability. PhD dissertation, The George Washington University

  • Johnson N, Kotz (1969) Distributions in statistics. Discrete distributions. Houghton Mifflin Company, Boston

    Google Scholar 

  • Klefsjo B (1980) HNBUE survival under shock models. Scand J Statist 8:39–47

    Google Scholar 

  • Klefsjo B (1982) The HNBUE and HNWUE classes of lies distributions. Naval Res Logistics 29: 331–344

    Google Scholar 

  • Rolski T (1975) Mean residual life. Bull Int Statist Inst 46:266–220

    Google Scholar 

  • Ross S (1983) Stochastic processes. John Wiley and Sons, New York

    Google Scholar 

  • Shaked M (1983) Expoential life functions with NBU components. Ann Prob 11:752–759

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmed, A.H.N. The generalized HNBUE (HNWUE) class of life distributions. ZOR - Methods and Models of Operations Research 34, 183–194 (1990). https://doi.org/10.1007/BF01415981

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01415981

Key words