Abstract
This paper examines the properties of a new class of life distributions (and its dual class), named GHNBUE (GHNWUE) whose members have a coefficient of variation less than (greater than) or equal to one. We characterize the GHNBUE (GHNWUE) property by using the Laplace transform. Several interesting shock models leading to the GHNBUE (GHNWUE) property are studied. These include both homogeneous and nonhomogeneous Poisson processes governing the arrival of shocks. A certain cumulative damage model is also investigated. We also examine whether the GHNBUE (GHNWUE) property is preserved under the reliability operations: (i) Convolution, (ii) mixtures and (iii) formation of coherent systems.
Zusammenfassung
Diese Arbeit untersucht Eigenschaften einer neuen Klasse von Lebensdauer-Verteilungen (und deren dualen Klasse), welche GHNBUE (bzw. GHNWUE) genannt wird und deren Elemente einen Variationskoeffizienten ⩽ 1 (bzw. ⩾ 1) haben. Wir charakterisieren die GNBUE (GHNWUE) Eigenschaft mit Hilfe der Laplace-Transformierten der Verteilung. Es werden verschiedene interessente Schockmodelle, welche zur GHNBUE (GHNWUE) Eigenschaft führen, studiert. Als Ankunftsprozesse der Schocks verwenden wir homogene und inhomogene Poisson-Prozesse. Auch ein gewisses additives Schadensmodell wird untersucht. Wir befassen uns auch mit der Frage, ob die GHNBUE (GHNWUE) Eigenschaft unter folgenden Zuverlässigkeitsoperationen erhalten bleibt: 1. Faltung, 2. Mischungen, 3. Bildung kohärenter Systeme.
Similar content being viewed by others
References
A-Hamed M, Proschan F (1973) Nonstationary shock models. Stoc Proc Appl 1:383–404
A-Hameed M, Proschan F (1975) Shock models with underlying birth process. J Appl Prob 12: 18–28
Ahmed A, Alzaid A (1988) Systems with exponential life and HNBUE component lives. IEEE Trans Rel 37:424–426
Barlow R, Proschan F (1975) Statistical theory of reliability and life testing. Holt, Rinehart and Winston, New York
Block H, Savits T (1980) Laplace transforms for classes of life distribution. Ann Prob 8:465–474
Esary J, Marshall A, Proschan F (1973) Shock model and wear Processes. Ann Prob 1:627–649
Gaines A (1973) Some contributions to the theory of restricted classes of distributions with application to reliability. PhD dissertation, The George Washington University
Johnson N, Kotz (1969) Distributions in statistics. Discrete distributions. Houghton Mifflin Company, Boston
Klefsjo B (1980) HNBUE survival under shock models. Scand J Statist 8:39–47
Klefsjo B (1982) The HNBUE and HNWUE classes of lies distributions. Naval Res Logistics 29: 331–344
Rolski T (1975) Mean residual life. Bull Int Statist Inst 46:266–220
Ross S (1983) Stochastic processes. John Wiley and Sons, New York
Shaked M (1983) Expoential life functions with NBU components. Ann Prob 11:752–759
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Ahmed, A.H.N. The generalized HNBUE (HNWUE) class of life distributions. ZOR - Methods and Models of Operations Research 34, 183–194 (1990). https://doi.org/10.1007/BF01415981
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF01415981