Abstract
Meggido [1974] showed that the maximum flow through sets of sources in a multiple sink flow network is a polymatroidal function. Recently, Federgruen and Groenevelt [1985], [1986] have considered polymatroids that can be represented by a multiple source flow network and have improved the runnung time of an important scheduling application.
We give a characterization of network representability and relate representable polymatroids to the theory of gammoids.
Zusammenfassung
Meggido [1974] hat gezeigt, daß ein maximaler Fluß durch ein Netzwerk mit mehrfachen Senken eine polymatroidale Funktion beschreibt. Federgruen und Groenvelt [1985], [1986] haben kürzlich solche Polymatroide betrachtet, die durch Flüsse in derartigen Netzwerken repräsentiert werden können und haben so die Laufzeit einer wichtigen Schedulinganwendung verbessern können.
Wir geben eine Charakterisierung von Funktionen, die durch derartige Netzflußnetzwerke realisierbar sind. Dabei stellen wir eine Verbindung her zwischen Repräsentierbarkeit und Gammoidtheorie.
Similar content being viewed by others
References
Bein W (1986) Netflows, Polymatroids and Greedy Structures, University of Osnabrück, Dissertation
Bein W, Brucker P (1987) Modelling polymatroidal functions by networks, Duke University CS1987-8
Cunningham WH (1985) Minimum cuts, modular functions, and matroid polyhedra, Networks 15: 205–215.
Federgruen A and Groenevelt H (1986) Preemptive scheduling of uniform machines by ordinary network flow techniques, Management Science 32: 341–349.
Federgruen A, Groenevelt H (1985) Polymatroidal network flow models with multiple sinks; Transformations to standard networkmodels, Research Report, Columbia University, Graduate School of Businesss
Lawler E L (1976) “Combinatorial optimization” Holt, Rinehart and Winston.
Lawler E L, Martel C U (1982) Computing maximal ‘polymatroidal’ network flows, Mathematics of Operations Research 7: 334–347
Martel C U (1982) Preemptive scheduling on uniform machines with release times, deadlines and due times, JACM 29: 812–829.
Megiddo M (1974) Optimal flows in networks with multiple sources and sinks, Mathematical Programming 7: 97–107.
Po Tong, Lawler E L, Vazirani V V (1984) Solving the weighted parity problem for gammoids by reduction to graphic matching, in ‘Progress in Combinatorial Optimization’, W. Pulleyblank (ed.), Academic Press
Welsh D (1976) “Matroid theory”, Academic Press
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Bein, W.W., Brucker, P. & Stallmann, M.F.M. A characterization of network representable polymatroids. ZOR - Methods and Models of Operations Research 35, 267–272 (1991). https://doi.org/10.1007/BF01417514
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF01417514