Skip to main content
Log in

Decomposition of algebras overF q (X 1,...,X m )

  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract

LetA be a finite dimensional associative algebra over the fieldF whereF is a finite (algebraic) extension of the function fieldF q(X 1,...,X m). Here Fq denotes the finite field ofq elements (q=pl for a primep). We address the problem of computing the Jacobson radical Rad (A) ofA and the problem of computing the minimal ideals of the radical-free part (Wedderburn decomposition). The algebraA is given by structure constants overF andF is given by structure constants overF q(X 1,...,X m). We give algorithms to find these structural components ofA. Our methods run in polynomial time ifm is constant, in particular in the casem=1. The radical algorithm is deterministic. Our method for computing the Wedderburn decomposition ofA uses randomization (for factoring univariate polynomials overF q).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bastida, J. R.: Field Extensions and Galois Theory. Rota, G.-C. (ed.): Encyclopedia of Mathematics and Its Applications, Vol. 22. Cambridge, New York, Melbourne: Cambridge University Press and Addison-Wesley 1984

    Google Scholar 

  2. Berlekamp, E. R.: Factoring polynomials over large finite fields. Math. Computation24, 713–715 (1970)

    Google Scholar 

  3. Eberly, W.: Computations for algebras and group representations. Ph.D. Thesis, Department of Computer Science, University of Toronto, Canada, 1989

    Google Scholar 

  4. Eberly, W.: Decomposition of algebras over finite fields and number fields. Computational Complexity1, 179–206 (1991)

    Google Scholar 

  5. Friedl, K., Rónyai, L.: Polynomial time solution of some problems in computational algebra. In: Proc. 17th ACM STOC, Providence, RI, 1985, 153–162. New York: ACM 1985

    Google Scholar 

  6. Gianni, P., Miller, V. Trager, B.: Decomposition of algebras. In: Proc. of ISSAC 1988, Rome, 300–308. Goos, G., Hartmanis, J. (ed.): Lecture Notes in Computer Science, Vol. 358. Berlin, Heidelberg, New York: Springer 1988

    Google Scholar 

  7. Herstein, I. N.: Noncommutative rings. Carus Math. Monographs, No. 15. New York: Mathematical Association of America, 1968

    Google Scholar 

  8. Kertész, A.: Lectures on Artinian rings. Budapest: Akadémiai Kiadó 1987

    Google Scholar 

  9. Pierce, R. S.: Associative algebras. Graduate Texts in Mathematics, No. 88. Berlin, Heidelberg, New York: Springer 1982

    Google Scholar 

  10. Reiner, I.: Maximal Orders. L. M. S. Monographs, No. 5. London, New York: Academic Press 1975

    Google Scholar 

  11. Rónyai, L.: Computing the structure of finite algebras. J. Symbolic Computation9, 355–373 (1990)

    Google Scholar 

  12. Schwartz, J. T.: Fast probabilistic algorithms for verification of polynomial identities. J. ACM27, 701–717 (1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research partially supported by Hungarian National Foundation for Scientific Research (OTKA), Grants 2581, F4116 and EC Cooperative Action IC 1000 (ALTEC).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanyos, G., Rónyai, L. & Szántó, Á. Decomposition of algebras overF q (X 1,...,X m ). AAECC 5, 71–90 (1994). https://doi.org/10.1007/BF01438277

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01438277

Keywords

Navigation