Skip to main content

The complexity of sparse polynomial interpolation over finite fields

  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract

We consider the problem of interpolating and zero testing sparse multivariate polynomials over finite fields from their values given by a black box. We give an estimate of the size of a test set constructed by Clausen, Dress, Grabmeier, and Karpinski [2] and improve the previously known lower bounds on the size of a minimal test set. Further, we present for arbitrary finite fields a new interpolation algorithm that uses only evaluations over the ground field, thereby answering an open question of Dür and Grabmeier [3].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Ben-Or, M., Tiwari, P.: A Deterministic Algorithm for Sparse Multivariate Polynomial Interpolation. Proc. ACM STOC20, 301–309 (1988)

    Google Scholar 

  2. Clausen, M., Dress, A., Grabmeier, J., Karpinski, M.: On Zero-Testing and Interpolation ofk-sparse Multivariate Polynomials over Finite Fields. TCS84, 151–164 (1991)

    Google Scholar 

  3. Dür, A., Grabmeier, J.: Applying Coding Theory to Sparse Interpolation, SIAM J. Comput.22, 695–704 (1993)

    Google Scholar 

  4. Graham, R. L., Knuth, D. E., Patashnik, O.: Concrete Mathematics. Reading, Massachusetts: Addison-Wesley Publishing Company 1989

    Google Scholar 

  5. Grigoriev, D. Y., Karpinski, M.: The Matching Problem for Bipartite Graphs with Polynomially Bounded Permanents is in NC. Proc. IEEE FOCS28, 166–172 (1987)

    Google Scholar 

  6. Grigoriev, D. Y., Karpinski, M., Singer, M. F.: Fast Parallel Algorithms for Sparse Multivariate Polynomial Interpolation over Finite Fields. SIAM J. Comput.19, 1059–1063 (1990)

    Google Scholar 

  7. Karpinski, M.: Boolean Circuit Complexity of Algebraic Interpolation Problems. Proc. CSL '88, Lecture Notes in Computer Science Vol.385, 138–147. Berlin, Heidelberg, New York: Springer 1989

    Google Scholar 

  8. Lidl, R., Niederreiter, H.: Introduction to finite fields and their applications. Cambridge, London, New York: Cambridge University Press 1986

    Google Scholar 

  9. Roth, R. M., Benedek, G. M.: Interpolation and Approximation of Sparse Multivariate Polynomials over GF(2). SIAM J. Comput.20, 291–314 (1991)

    Google Scholar 

  10. Werther, K.: Interpolation und Approximation Boolescher Formeln. Diploma Thesis, University of Bonn, FRG (1991)

    Google Scholar 

  11. Zippel, R.: Probabilistic Algorithms for Sparse Polynomials. Lecture Notes in Computer Science Vol. 72. Berlin, Heidelberg, New York: Springer 1979

    Google Scholar 

  12. Zippel, R.: Interpolating Polynomials from their Values. J. Symb. Comp.9, 375–403 (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Werther, K. The complexity of sparse polynomial interpolation over finite fields. AAECC 5, 91–103 (1994). https://doi.org/10.1007/BF01438278

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01438278

Keywords