Abstract
We consider the problem of interpolating and zero testing sparse multivariate polynomials over finite fields from their values given by a black box. We give an estimate of the size of a test set constructed by Clausen, Dress, Grabmeier, and Karpinski [2] and improve the previously known lower bounds on the size of a minimal test set. Further, we present for arbitrary finite fields a new interpolation algorithm that uses only evaluations over the ground field, thereby answering an open question of Dür and Grabmeier [3].
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Ben-Or, M., Tiwari, P.: A Deterministic Algorithm for Sparse Multivariate Polynomial Interpolation. Proc. ACM STOC20, 301–309 (1988)
Clausen, M., Dress, A., Grabmeier, J., Karpinski, M.: On Zero-Testing and Interpolation ofk-sparse Multivariate Polynomials over Finite Fields. TCS84, 151–164 (1991)
Dür, A., Grabmeier, J.: Applying Coding Theory to Sparse Interpolation, SIAM J. Comput.22, 695–704 (1993)
Graham, R. L., Knuth, D. E., Patashnik, O.: Concrete Mathematics. Reading, Massachusetts: Addison-Wesley Publishing Company 1989
Grigoriev, D. Y., Karpinski, M.: The Matching Problem for Bipartite Graphs with Polynomially Bounded Permanents is in NC. Proc. IEEE FOCS28, 166–172 (1987)
Grigoriev, D. Y., Karpinski, M., Singer, M. F.: Fast Parallel Algorithms for Sparse Multivariate Polynomial Interpolation over Finite Fields. SIAM J. Comput.19, 1059–1063 (1990)
Karpinski, M.: Boolean Circuit Complexity of Algebraic Interpolation Problems. Proc. CSL '88, Lecture Notes in Computer Science Vol.385, 138–147. Berlin, Heidelberg, New York: Springer 1989
Lidl, R., Niederreiter, H.: Introduction to finite fields and their applications. Cambridge, London, New York: Cambridge University Press 1986
Roth, R. M., Benedek, G. M.: Interpolation and Approximation of Sparse Multivariate Polynomials over GF(2). SIAM J. Comput.20, 291–314 (1991)
Werther, K.: Interpolation und Approximation Boolescher Formeln. Diploma Thesis, University of Bonn, FRG (1991)
Zippel, R.: Probabilistic Algorithms for Sparse Polynomials. Lecture Notes in Computer Science Vol. 72. Berlin, Heidelberg, New York: Springer 1979
Zippel, R.: Interpolating Polynomials from their Values. J. Symb. Comp.9, 375–403 (1990)
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Werther, K. The complexity of sparse polynomial interpolation over finite fields. AAECC 5, 91–103 (1994). https://doi.org/10.1007/BF01438278
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF01438278